用于同步辐射束线x射线强度监测的SiC独立式膜。

IF 2.5 3区 物理与天体物理 Journal of Synchrotron Radiation Pub Date : 2025-01-01 DOI:10.1107/S1600577524010646
Gabriele Trovato, Marzio De Napoli, Christian Gollwitzer, Simone Finizio, Michael Krumrey, Francesco La Via, Luca Lanzanò, Giuliana Milluzzo, Samuele Moscato, Matthias Müller, Francesco Romano, Dario Ferreira Sanchez, Massimo Camarda
{"title":"用于同步辐射束线x射线强度监测的SiC独立式膜。","authors":"Gabriele Trovato, Marzio De Napoli, Christian Gollwitzer, Simone Finizio, Michael Krumrey, Francesco La Via, Luca Lanzanò, Giuliana Milluzzo, Samuele Moscato, Matthias Müller, Francesco Romano, Dario Ferreira Sanchez, Massimo Camarda","doi":"10.1107/S1600577524010646","DOIUrl":null,"url":null,"abstract":"<p><p>For many synchrotron radiation experiments, it is critical to perform continuous, real-time monitoring of the X-ray flux for normalization and stabilization purposes. Traditional transmission-mode monitors included metal mesh foils and ionization chambers, which suffered from low signal stability and size constraints. Solid-state detectors are now considered superior alternatives for many applications, offering appealing features like compactness and signal stability. However, silicon-based detectors suffer from poor radiation resistance, and diamond detectors are limited in scalability and are expensive to produce. Silicon carbide (SiC) has recently emerged as an alternative to both materials, offering a high-quality mature semiconductor with high thermal conductivity and radiation hardness. This study focuses on a systematic exploration of the SiC `free-standing membrane' devices developed by SenSiC GmbH. In particular, we performed in-depth sensor-response analysis with photon energies ranging from tender (1.75 keV) to hard (10 keV) X-rays at the Four-Crystal Monochromator beamline in the PTB laboratory at the synchrotron radiation facility BESSY II, studying uniformity of transmission and responsivity compared with the state-of-the-art beam monitors. Furthermore, we theoretically evaluated the expected signal in different regions of the sensors, also taking into account the effect of charge diffusion from the SiC substrate in the case of the not-carved region.</p>","PeriodicalId":48729,"journal":{"name":"Journal of Synchrotron Radiation","volume":" ","pages":"118-124"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11708857/pdf/","citationCount":"0","resultStr":"{\"title\":\"SiC free-standing membrane for X-ray intensity monitoring in synchrotron radiation beamlines.\",\"authors\":\"Gabriele Trovato, Marzio De Napoli, Christian Gollwitzer, Simone Finizio, Michael Krumrey, Francesco La Via, Luca Lanzanò, Giuliana Milluzzo, Samuele Moscato, Matthias Müller, Francesco Romano, Dario Ferreira Sanchez, Massimo Camarda\",\"doi\":\"10.1107/S1600577524010646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>For many synchrotron radiation experiments, it is critical to perform continuous, real-time monitoring of the X-ray flux for normalization and stabilization purposes. Traditional transmission-mode monitors included metal mesh foils and ionization chambers, which suffered from low signal stability and size constraints. Solid-state detectors are now considered superior alternatives for many applications, offering appealing features like compactness and signal stability. However, silicon-based detectors suffer from poor radiation resistance, and diamond detectors are limited in scalability and are expensive to produce. Silicon carbide (SiC) has recently emerged as an alternative to both materials, offering a high-quality mature semiconductor with high thermal conductivity and radiation hardness. This study focuses on a systematic exploration of the SiC `free-standing membrane' devices developed by SenSiC GmbH. In particular, we performed in-depth sensor-response analysis with photon energies ranging from tender (1.75 keV) to hard (10 keV) X-rays at the Four-Crystal Monochromator beamline in the PTB laboratory at the synchrotron radiation facility BESSY II, studying uniformity of transmission and responsivity compared with the state-of-the-art beam monitors. Furthermore, we theoretically evaluated the expected signal in different regions of the sensors, also taking into account the effect of charge diffusion from the SiC substrate in the case of the not-carved region.</p>\",\"PeriodicalId\":48729,\"journal\":{\"name\":\"Journal of Synchrotron Radiation\",\"volume\":\" \",\"pages\":\"118-124\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11708857/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Synchrotron Radiation\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1107/S1600577524010646\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Synchrotron Radiation","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1107/S1600577524010646","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于许多同步辐射实验来说,为了标准化和稳定化的目的,对x射线通量进行连续的实时监测是至关重要的。传统的传输模式监测仪包括金属网箔和电离室,它们受到信号稳定性低和尺寸限制的影响。固态探测器现在被认为是许多应用的优越选择,提供吸引人的特点,如紧凑和信号稳定。然而,硅基探测器的抗辐射性较差,金刚石探测器的可扩展性有限,生产成本昂贵。碳化硅(SiC)最近作为这两种材料的替代品出现,提供了具有高导热性和辐射硬度的高质量成熟半导体。本研究的重点是系统探索由SenSiC公司开发的SiC“独立式膜”器件。特别是,我们在同步辐射设施BESSY II的PTB实验室的四晶单色仪光束线上进行了深入的传感器响应分析,光子能量范围从弱(1.75 keV)到硬(10 keV) x射线,研究了与最先进的光束监视器相比的传输均匀性和响应性。此外,我们从理论上评估了传感器不同区域的期望信号,也考虑了在未切割区域的情况下来自SiC衬底的电荷扩散的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SiC free-standing membrane for X-ray intensity monitoring in synchrotron radiation beamlines.

For many synchrotron radiation experiments, it is critical to perform continuous, real-time monitoring of the X-ray flux for normalization and stabilization purposes. Traditional transmission-mode monitors included metal mesh foils and ionization chambers, which suffered from low signal stability and size constraints. Solid-state detectors are now considered superior alternatives for many applications, offering appealing features like compactness and signal stability. However, silicon-based detectors suffer from poor radiation resistance, and diamond detectors are limited in scalability and are expensive to produce. Silicon carbide (SiC) has recently emerged as an alternative to both materials, offering a high-quality mature semiconductor with high thermal conductivity and radiation hardness. This study focuses on a systematic exploration of the SiC `free-standing membrane' devices developed by SenSiC GmbH. In particular, we performed in-depth sensor-response analysis with photon energies ranging from tender (1.75 keV) to hard (10 keV) X-rays at the Four-Crystal Monochromator beamline in the PTB laboratory at the synchrotron radiation facility BESSY II, studying uniformity of transmission and responsivity compared with the state-of-the-art beam monitors. Furthermore, we theoretically evaluated the expected signal in different regions of the sensors, also taking into account the effect of charge diffusion from the SiC substrate in the case of the not-carved region.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Synchrotron Radiation
Journal of Synchrotron Radiation INSTRUMENTS & INSTRUMENTATIONOPTICS&-OPTICS
CiteScore
5.60
自引率
12.00%
发文量
289
审稿时长
1 months
期刊介绍: Synchrotron radiation research is rapidly expanding with many new sources of radiation being created globally. Synchrotron radiation plays a leading role in pure science and in emerging technologies. The Journal of Synchrotron Radiation provides comprehensive coverage of the entire field of synchrotron radiation and free-electron laser research including instrumentation, theory, computing and scientific applications in areas such as biology, nanoscience and materials science. Rapid publication ensures an up-to-date information resource for scientists and engineers in the field.
期刊最新文献
Compensation for the source drift of a free-electron laser beamline by adjusting the fixed-focus constant of the grating monochromator. Long-term timing stabilization for pump-probe experiments at SACLA. Novel fixed-target serial crystallography flip-holder for macromolecular crystallography beamlines at synchrotron radiation sources. Probing soft X-ray induced photoreduction of a model Mn-complex at cryogenic conditions. ULtimate MAGnetic characterization (ULMAG) at the ID12 beamline of ESRF: from element-specific properties to macroscopic functionalities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1