原位生长的连续石墨烯网络提高了铜基复合材料的导电性和摩擦学性能

IF 2.5 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Frontiers of Materials Science Pub Date : 2024-12-09 DOI:10.1007/s11706-024-0704-x
Liangliang Zeng, Yilong Liang, Peng Chen
{"title":"原位生长的连续石墨烯网络提高了铜基复合材料的导电性和摩擦学性能","authors":"Liangliang Zeng,&nbsp;Yilong Liang,&nbsp;Peng Chen","doi":"10.1007/s11706-024-0704-x","DOIUrl":null,"url":null,"abstract":"<div><p>Copper has good electrical conductivity but poor mechanical and wear-resistant properties. To enhance the mechanical and wear-resistant properties of the copper matrix, a strategy of <i>in-situ</i> generation of graphene was adopted. Through ball-milling processes, a carbon source and submicron spherical copper were uniformly dispersed in a dendritic copper. Then, a uniform and continuous graphene network was generated <i>in-situ</i> in the copper matrix during the vacuum hot-pressing sintering process to improve the performance of composites. The graphene product exhibited lubrication effect and provided channels for electrons to move through the interface, improving the wear resistance and the electrical conductivity of composites. When the graphene content in the composite material was 0.100 wt.%, the friction coefficient and the wear rate were 0.36 and 6.36 × 10<sup>−6</sup> mm<sup>3</sup>·N<sup>−1</sup>·m<sup>−1</sup>, diminished by 52% and reduced 5.11 times those of pure copper, respectively, while the electrical conductivity rose to 94.57% IACS and the hardness was enhanced by 47.8%. Therefore, this method provides a new approach for the preparation of highly conductive and wear-resistant copper matrix composite materials.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"18 4","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-situ grown continuous graphene network enhances the electrical conductivity and tribological properties of copper matrix composites\",\"authors\":\"Liangliang Zeng,&nbsp;Yilong Liang,&nbsp;Peng Chen\",\"doi\":\"10.1007/s11706-024-0704-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Copper has good electrical conductivity but poor mechanical and wear-resistant properties. To enhance the mechanical and wear-resistant properties of the copper matrix, a strategy of <i>in-situ</i> generation of graphene was adopted. Through ball-milling processes, a carbon source and submicron spherical copper were uniformly dispersed in a dendritic copper. Then, a uniform and continuous graphene network was generated <i>in-situ</i> in the copper matrix during the vacuum hot-pressing sintering process to improve the performance of composites. The graphene product exhibited lubrication effect and provided channels for electrons to move through the interface, improving the wear resistance and the electrical conductivity of composites. When the graphene content in the composite material was 0.100 wt.%, the friction coefficient and the wear rate were 0.36 and 6.36 × 10<sup>−6</sup> mm<sup>3</sup>·N<sup>−1</sup>·m<sup>−1</sup>, diminished by 52% and reduced 5.11 times those of pure copper, respectively, while the electrical conductivity rose to 94.57% IACS and the hardness was enhanced by 47.8%. Therefore, this method provides a new approach for the preparation of highly conductive and wear-resistant copper matrix composite materials.</p></div>\",\"PeriodicalId\":572,\"journal\":{\"name\":\"Frontiers of Materials Science\",\"volume\":\"18 4\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11706-024-0704-x\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11706-024-0704-x","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

铜具有良好的导电性,但机械和耐磨性能较差。为了提高铜基体的机械性能和耐磨性能,采用了原位生成石墨烯的策略。通过球磨工艺,碳源和亚微米球形铜均匀地分散在枝晶铜中。然后,在真空热压烧结过程中,在铜基体上原位生成均匀连续的石墨烯网络,以提高复合材料的性能。石墨烯产品具有润滑作用,并为电子在界面上移动提供通道,提高了复合材料的耐磨性和导电性。当石墨烯含量为0.100 wt.%时,复合材料的摩擦系数和磨损率分别为0.36和6.36 × 10−6 mm3·N−1·m−1,分别比纯铜降低了52%和5.11倍,电导率提高到94.57% IACS,硬度提高了47.8%。因此,该方法为制备高导电耐磨铜基复合材料提供了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
In-situ grown continuous graphene network enhances the electrical conductivity and tribological properties of copper matrix composites

Copper has good electrical conductivity but poor mechanical and wear-resistant properties. To enhance the mechanical and wear-resistant properties of the copper matrix, a strategy of in-situ generation of graphene was adopted. Through ball-milling processes, a carbon source and submicron spherical copper were uniformly dispersed in a dendritic copper. Then, a uniform and continuous graphene network was generated in-situ in the copper matrix during the vacuum hot-pressing sintering process to improve the performance of composites. The graphene product exhibited lubrication effect and provided channels for electrons to move through the interface, improving the wear resistance and the electrical conductivity of composites. When the graphene content in the composite material was 0.100 wt.%, the friction coefficient and the wear rate were 0.36 and 6.36 × 10−6 mm3·N−1·m−1, diminished by 52% and reduced 5.11 times those of pure copper, respectively, while the electrical conductivity rose to 94.57% IACS and the hardness was enhanced by 47.8%. Therefore, this method provides a new approach for the preparation of highly conductive and wear-resistant copper matrix composite materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers of Materials Science
Frontiers of Materials Science MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
4.20
自引率
3.70%
发文量
515
期刊介绍: Frontiers of Materials Science is a peer-reviewed international journal that publishes high quality reviews/mini-reviews, full-length research papers, and short Communications recording the latest pioneering studies on all aspects of materials science. It aims at providing a forum to promote communication and exchange between scientists in the worldwide materials science community. The subjects are seen from international and interdisciplinary perspectives covering areas including (but not limited to): Biomaterials including biomimetics and biomineralization; Nano materials; Polymers and composites; New metallic materials; Advanced ceramics; Materials modeling and computation; Frontier materials synthesis and characterization; Novel methods for materials manufacturing; Materials performance; Materials applications in energy, information and biotechnology.
期刊最新文献
Development of collagen and nano-hydroxyapatite-based novel self-healing cartilage Optimization of process parameters for TC11 alloy via tailoring scanning strategy in laser powder bed fusion Application of SEM-CL system in the characterization of material microstructures Quantifying functional groups in the active layer of polyamide nanofiltration membranes via the dye adsorption method Manganese mineralization-boosted photothermal conversion efficiency of Prussian blue for cancer therapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1