新型聚(N,N-二甲氨基甲基丙烯酸乙酯)基两亲性共聚物稳定土壤材料

IF 1 4区 化学 Q4 POLYMER SCIENCE Polymer Science, Series A Pub Date : 2024-10-11 DOI:10.1134/S0965545X24600881
A. V. Plutalova, N. S. Serkhacheva, R. V. Toms, N. I. Prokopov, Yu. G. Bogdanova, E. A. Lysenko, E. V. Chernikova
{"title":"新型聚(N,N-二甲氨基甲基丙烯酸乙酯)基两亲性共聚物稳定土壤材料","authors":"A. V. Plutalova,&nbsp;N. S. Serkhacheva,&nbsp;R. V. Toms,&nbsp;N. I. Prokopov,&nbsp;Yu. G. Bogdanova,&nbsp;E. A. Lysenko,&nbsp;E. V. Chernikova","doi":"10.1134/S0965545X24600881","DOIUrl":null,"url":null,"abstract":"<p>RAFT polymerization was applied for the synthesis of hydrophilic poly(<i>N</i>,<i>N</i>-dimethylaminoethyl methacrylate) and random copolymers of <i>N</i>,<i>N</i>-dimethylaminoethyl methacrylate, containing 5 or 10 mol % of hydrophobic monomers methyl acrylate, methyl methacrylate, or butyl acrylate. The influence of chemical nature of hydrophobic comonomer and the copolymer composition on physico-chemical properties of polymers and their ability to strengthen friable (bulk) materials like quartz sand, clay, or limestone was systematically studied. It is shown that synthesized copolymers have relatively low glass transition temperatures, form aggregatively stable molecular solutions in water in a wide range of pH values, and have a pronounced surface activity, while their dried films demonstrate water-repellent properties. It is found that amphiphilic copolymers with a small content of hydrophobic comonomer units are much more effective as stabilizers of soils (bulk materials) in terms of mechanical strength and durability than the original hydrophilic homopolymer.</p>","PeriodicalId":738,"journal":{"name":"Polymer Science, Series A","volume":"66 3","pages":"363 - 375"},"PeriodicalIF":1.0000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel Poly(N,N-dimethylaminoethylmethacrylate)-Based Amphiphilic Copolymers for Stabilization of Soil Materials\",\"authors\":\"A. V. Plutalova,&nbsp;N. S. Serkhacheva,&nbsp;R. V. Toms,&nbsp;N. I. Prokopov,&nbsp;Yu. G. Bogdanova,&nbsp;E. A. Lysenko,&nbsp;E. V. Chernikova\",\"doi\":\"10.1134/S0965545X24600881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>RAFT polymerization was applied for the synthesis of hydrophilic poly(<i>N</i>,<i>N</i>-dimethylaminoethyl methacrylate) and random copolymers of <i>N</i>,<i>N</i>-dimethylaminoethyl methacrylate, containing 5 or 10 mol % of hydrophobic monomers methyl acrylate, methyl methacrylate, or butyl acrylate. The influence of chemical nature of hydrophobic comonomer and the copolymer composition on physico-chemical properties of polymers and their ability to strengthen friable (bulk) materials like quartz sand, clay, or limestone was systematically studied. It is shown that synthesized copolymers have relatively low glass transition temperatures, form aggregatively stable molecular solutions in water in a wide range of pH values, and have a pronounced surface activity, while their dried films demonstrate water-repellent properties. It is found that amphiphilic copolymers with a small content of hydrophobic comonomer units are much more effective as stabilizers of soils (bulk materials) in terms of mechanical strength and durability than the original hydrophilic homopolymer.</p>\",\"PeriodicalId\":738,\"journal\":{\"name\":\"Polymer Science, Series A\",\"volume\":\"66 3\",\"pages\":\"363 - 375\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Science, Series A\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0965545X24600881\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Science, Series A","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1134/S0965545X24600881","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

采用RAFT聚合法合成亲水性聚(N,N-二甲氨基甲基丙烯酸乙酯)和N,N-二甲氨基甲基丙烯酸乙酯的无规共聚物,其中含有5或10 mol %的疏水单体丙烯酸甲酯、甲基丙烯酸甲酯或丙烯酸丁酯。系统地研究了疏水共聚物的化学性质和共聚物组成对聚合物理化性质的影响,以及它们对石英砂、粘土或石灰石等易碎(大块)材料的强化能力。结果表明,合成的共聚物具有相对较低的玻璃化转变温度,在很宽的pH值范围内形成聚集稳定的分子溶液,并具有明显的表面活性,而其干燥膜具有拒水性。研究发现,疏水共聚单体含量少的两亲共聚物作为土壤(块状材料)的稳定剂,在机械强度和耐久性方面比原亲水性均聚物更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Novel Poly(N,N-dimethylaminoethylmethacrylate)-Based Amphiphilic Copolymers for Stabilization of Soil Materials

RAFT polymerization was applied for the synthesis of hydrophilic poly(N,N-dimethylaminoethyl methacrylate) and random copolymers of N,N-dimethylaminoethyl methacrylate, containing 5 or 10 mol % of hydrophobic monomers methyl acrylate, methyl methacrylate, or butyl acrylate. The influence of chemical nature of hydrophobic comonomer and the copolymer composition on physico-chemical properties of polymers and their ability to strengthen friable (bulk) materials like quartz sand, clay, or limestone was systematically studied. It is shown that synthesized copolymers have relatively low glass transition temperatures, form aggregatively stable molecular solutions in water in a wide range of pH values, and have a pronounced surface activity, while their dried films demonstrate water-repellent properties. It is found that amphiphilic copolymers with a small content of hydrophobic comonomer units are much more effective as stabilizers of soils (bulk materials) in terms of mechanical strength and durability than the original hydrophilic homopolymer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymer Science, Series A
Polymer Science, Series A 化学-高分子科学
CiteScore
1.70
自引率
0.00%
发文量
55
审稿时长
3 months
期刊介绍: Polymer Science, Series A is a journal published in collaboration with the Russian Academy of Sciences. Series A includes experimental and theoretical papers and reviews devoted to physicochemical studies of the structure and properties of polymers (6 issues a year). All journal series present original papers and reviews covering all fundamental aspects of macromolecular science. Contributions should be of marked novelty and interest for a broad readership. Articles may be written in English or Russian regardless of country and nationality of authors. All manuscripts are peer reviewed. Online submission via Internet to the Series A, B, and C is available at http://polymsci.ru.
期刊最新文献
Erratum to: Recovered Carbon Black Filler Improves the Properties of Chitosan 3-Dimensional Composites Self-Diffraction Characterization and Optical Limiting Behavior of the PAni/PVA Nanofiber Effect of Heat-Setting Temperature on the Structure and Properties of BOPET Film Use of Guanidine-Containing Organomineral Complexes for Protection of Soft Polyvinyl Chloride Compounds from Photo- and Biodegradation On the Separation of Peptides with Inverted Sequences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1