通过tweet的时间主题建模来检测和跟踪抑郁症:来自180天研究的见解

Ranganathan Chandrasekaran, Suhas Kotaki, Abhilash Hosaagrahaara Nagaraja
{"title":"通过tweet的时间主题建模来检测和跟踪抑郁症:来自180天研究的见解","authors":"Ranganathan Chandrasekaran, Suhas Kotaki, Abhilash Hosaagrahaara Nagaraja","doi":"10.1038/s44184-024-00107-5","DOIUrl":null,"url":null,"abstract":"Depression affects over 280 million people globally, yet many cases remain undiagnosed or untreated due to stigma and lack of awareness. Social media platforms like X (formerly Twitter) offer a way to monitor and analyze depression markers. This study analyzes Twitter data 90 days before and 90 days after a self-disclosed clinical diagnosis. We gathered 246,637 tweets from 229 diagnosed users. CorEx topic modeling identified seven themes: causes, physical symptoms, mental symptoms, swear words, treatment, coping/support mechanisms, and lifestyle, and conditional logistic regression assessed the odds of these themes occurring post-diagnosis. A control group of healthy users (284,772 tweets) was used to develop and evaluate machine learning classifiers—support vector machines, naive Bayes, and logistic regression—to distinguish between depressed and non-depressed users. Logistic regression and SVM performed best. These findings show the potential of Twitter data for tracking depression and changes in symptoms, coping mechanisms, and treatment use.","PeriodicalId":74321,"journal":{"name":"Npj mental health research","volume":" ","pages":"1-10"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44184-024-00107-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Detecting and tracking depression through temporal topic modeling of tweets: insights from a 180-day study\",\"authors\":\"Ranganathan Chandrasekaran, Suhas Kotaki, Abhilash Hosaagrahaara Nagaraja\",\"doi\":\"10.1038/s44184-024-00107-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Depression affects over 280 million people globally, yet many cases remain undiagnosed or untreated due to stigma and lack of awareness. Social media platforms like X (formerly Twitter) offer a way to monitor and analyze depression markers. This study analyzes Twitter data 90 days before and 90 days after a self-disclosed clinical diagnosis. We gathered 246,637 tweets from 229 diagnosed users. CorEx topic modeling identified seven themes: causes, physical symptoms, mental symptoms, swear words, treatment, coping/support mechanisms, and lifestyle, and conditional logistic regression assessed the odds of these themes occurring post-diagnosis. A control group of healthy users (284,772 tweets) was used to develop and evaluate machine learning classifiers—support vector machines, naive Bayes, and logistic regression—to distinguish between depressed and non-depressed users. Logistic regression and SVM performed best. These findings show the potential of Twitter data for tracking depression and changes in symptoms, coping mechanisms, and treatment use.\",\"PeriodicalId\":74321,\"journal\":{\"name\":\"Npj mental health research\",\"volume\":\" \",\"pages\":\"1-10\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s44184-024-00107-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Npj mental health research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44184-024-00107-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Npj mental health research","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44184-024-00107-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

抑郁症影响着全球超过2.8亿人,但由于污名化和缺乏认识,许多病例仍未得到诊断或治疗。像X(以前的Twitter)这样的社交媒体平台提供了一种监测和分析抑郁症标志物的方法。本研究分析了自我披露的临床诊断前90天和后90天的Twitter数据。我们从229名确诊用户那里收集了246637条推文。CorEx主题建模确定了7个主题:病因、身体症状、精神症状、脏话、治疗、应对/支持机制和生活方式,条件逻辑回归评估了这些主题在诊断后发生的几率。健康用户的控制组(284,772条推文)被用来开发和评估机器学习分类器——支持向量机、朴素贝叶斯和逻辑回归——以区分抑郁和非抑郁用户。逻辑回归和支持向量机表现最好。这些发现显示了Twitter数据在追踪抑郁症状、应对机制和治疗使用方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detecting and tracking depression through temporal topic modeling of tweets: insights from a 180-day study
Depression affects over 280 million people globally, yet many cases remain undiagnosed or untreated due to stigma and lack of awareness. Social media platforms like X (formerly Twitter) offer a way to monitor and analyze depression markers. This study analyzes Twitter data 90 days before and 90 days after a self-disclosed clinical diagnosis. We gathered 246,637 tweets from 229 diagnosed users. CorEx topic modeling identified seven themes: causes, physical symptoms, mental symptoms, swear words, treatment, coping/support mechanisms, and lifestyle, and conditional logistic regression assessed the odds of these themes occurring post-diagnosis. A control group of healthy users (284,772 tweets) was used to develop and evaluate machine learning classifiers—support vector machines, naive Bayes, and logistic regression—to distinguish between depressed and non-depressed users. Logistic regression and SVM performed best. These findings show the potential of Twitter data for tracking depression and changes in symptoms, coping mechanisms, and treatment use.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A qualitative analysis of the psychedelic mushroom come-up and come-down. Decoding substance use disorder severity from clinical notes using a large language model. Prediction of individual patient outcomes to psychotherapy vs medication for major depression. Author Correction: Sex differences in the association between repetitive negative thinking and neurofilament light. Meta analysis of resting frontal alpha asymmetry as a biomarker of depression.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1