{"title":"树突状细胞的细胞呼吸:探索潜在治疗干预的氧依赖途径。","authors":"Antonia Peter, Zwi N Berneman, Nathalie Cools","doi":"10.1016/j.freeradbiomed.2024.12.014","DOIUrl":null,"url":null,"abstract":"<p><p>Dendritic cells (DCs) are specialized antigen-presenting cells crucial for initiating and regulating adaptive immune responses, making them promising candidates for therapeutic interventions in various immune-mediated diseases. Increasing evidence suggests that the microenvironment in which cells are cultured, as well as the milieu in which they perform their functions, significantly impact their immunomodulatory properties. Among these environmental factors, the role of oxygen in DC biology and its significance for both their in vitro generation and in vivo therapeutic application require investigation. Unlike the atmospheric oxygen level of 21 % commonly used in in vitro assays, physiological oxygen levels are much lower (3-9 %), and hypoxia (<1.3 %) is a prevalent condition of both healthy tissues and disease states. This mismatch between laboratory and physiological conditions underscores the critical need to culture and evaluate therapeutic cells under physiologically relevant oxygen levels to improve their translational relevance and clinical outcomes. This review explores the characteristic hallmarks of human DCs that are influenced by oxygen-dependent pathways, including metabolism, phenotype, cytokine secretion, and migration. Furthermore, we discuss the potential of manipulating oxygen levels to refine the generation and functionality of DCs for therapeutic purposes.</p>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":" ","pages":"536-556"},"PeriodicalIF":7.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cellular respiration in dendritic cells: Exploring oxygen-dependent pathways for potential therapeutic interventions.\",\"authors\":\"Antonia Peter, Zwi N Berneman, Nathalie Cools\",\"doi\":\"10.1016/j.freeradbiomed.2024.12.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dendritic cells (DCs) are specialized antigen-presenting cells crucial for initiating and regulating adaptive immune responses, making them promising candidates for therapeutic interventions in various immune-mediated diseases. Increasing evidence suggests that the microenvironment in which cells are cultured, as well as the milieu in which they perform their functions, significantly impact their immunomodulatory properties. Among these environmental factors, the role of oxygen in DC biology and its significance for both their in vitro generation and in vivo therapeutic application require investigation. Unlike the atmospheric oxygen level of 21 % commonly used in in vitro assays, physiological oxygen levels are much lower (3-9 %), and hypoxia (<1.3 %) is a prevalent condition of both healthy tissues and disease states. This mismatch between laboratory and physiological conditions underscores the critical need to culture and evaluate therapeutic cells under physiologically relevant oxygen levels to improve their translational relevance and clinical outcomes. This review explores the characteristic hallmarks of human DCs that are influenced by oxygen-dependent pathways, including metabolism, phenotype, cytokine secretion, and migration. Furthermore, we discuss the potential of manipulating oxygen levels to refine the generation and functionality of DCs for therapeutic purposes.</p>\",\"PeriodicalId\":12407,\"journal\":{\"name\":\"Free Radical Biology and Medicine\",\"volume\":\" \",\"pages\":\"536-556\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Free Radical Biology and Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.freeradbiomed.2024.12.014\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.freeradbiomed.2024.12.014","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Cellular respiration in dendritic cells: Exploring oxygen-dependent pathways for potential therapeutic interventions.
Dendritic cells (DCs) are specialized antigen-presenting cells crucial for initiating and regulating adaptive immune responses, making them promising candidates for therapeutic interventions in various immune-mediated diseases. Increasing evidence suggests that the microenvironment in which cells are cultured, as well as the milieu in which they perform their functions, significantly impact their immunomodulatory properties. Among these environmental factors, the role of oxygen in DC biology and its significance for both their in vitro generation and in vivo therapeutic application require investigation. Unlike the atmospheric oxygen level of 21 % commonly used in in vitro assays, physiological oxygen levels are much lower (3-9 %), and hypoxia (<1.3 %) is a prevalent condition of both healthy tissues and disease states. This mismatch between laboratory and physiological conditions underscores the critical need to culture and evaluate therapeutic cells under physiologically relevant oxygen levels to improve their translational relevance and clinical outcomes. This review explores the characteristic hallmarks of human DCs that are influenced by oxygen-dependent pathways, including metabolism, phenotype, cytokine secretion, and migration. Furthermore, we discuss the potential of manipulating oxygen levels to refine the generation and functionality of DCs for therapeutic purposes.
期刊介绍:
Free Radical Biology and Medicine is a leading journal in the field of redox biology, which is the study of the role of reactive oxygen species (ROS) and other oxidizing agents in biological systems. The journal serves as a premier forum for publishing innovative and groundbreaking research that explores the redox biology of health and disease, covering a wide range of topics and disciplines. Free Radical Biology and Medicine also commissions Special Issues that highlight recent advances in both basic and clinical research, with a particular emphasis on the mechanisms underlying altered metabolism and redox signaling. These Special Issues aim to provide a focused platform for the latest research in the field, fostering collaboration and knowledge exchange among researchers and clinicians.