破译哺乳动物细胞培养中乳酸代谢转变的分子驱动因素。

IF 6.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Metabolic engineering Pub Date : 2024-12-04 DOI:10.1016/j.ymben.2024.12.001
Mauro Torres, Ellie Hawke, Robyn Hoare, Rachel Scholey, Leon P Pybus, Alison Young, Andrew Hayes, Alan J Dickson
{"title":"破译哺乳动物细胞培养中乳酸代谢转变的分子驱动因素。","authors":"Mauro Torres, Ellie Hawke, Robyn Hoare, Rachel Scholey, Leon P Pybus, Alison Young, Andrew Hayes, Alan J Dickson","doi":"10.1016/j.ymben.2024.12.001","DOIUrl":null,"url":null,"abstract":"<p><p>Lactate metabolism plays a critical role in mammalian cell bioprocessing, influencing cellular performance and productivity. The transition from lactate production to consumption, known as lactate metabolic shift, is highly beneficial and has been shown to extend culture lifespan and enhance productivity, yet its molecular drivers remain poorly understood. Here, we have explored the mechanisms that underpin this metabolic shift through two case studies, illustrating environmental- and genetic-driven factors. We characterised these study cases at process, metabolic and transcriptomic levels. Our findings indicate that glutamine depletion coincided with the timing of the lactate metabolic shift, significantly affecting cell growth, productivity and overall metabolism. Transcriptome analysis revealed dynamic regulation the ATF4 pathway, involved in the amino acid (starvation) response, where glutamine depletion activates ATF4 gene and its targets. Manipulating ATF4 expression through overexpression and knockdown experiments showed significant changes in metabolism of glutamine and lactate, impacting cellular performance. Overexpression of ATF4 increased cell growth and glutamine consumption, promoting a lactate metabolic shift. In contrast, ATF4 downregulation decreased cell proliferation and glutamine uptake, leading to production of lactate without any signs of lactate shift. These findings underscore a critical role for ATF4 in regulation of glutamine and lactate metabolism, related to phasic patterns of growth during CHO cell culture. This study offers unique insight into metabolic reprogramming during the lactate metabolic shift and the molecular drivers that determine cell status during culture.</p>","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":" ","pages":"25-39"},"PeriodicalIF":6.8000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deciphering molecular drivers of lactate metabolic shift in mammalian cell cultures.\",\"authors\":\"Mauro Torres, Ellie Hawke, Robyn Hoare, Rachel Scholey, Leon P Pybus, Alison Young, Andrew Hayes, Alan J Dickson\",\"doi\":\"10.1016/j.ymben.2024.12.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lactate metabolism plays a critical role in mammalian cell bioprocessing, influencing cellular performance and productivity. The transition from lactate production to consumption, known as lactate metabolic shift, is highly beneficial and has been shown to extend culture lifespan and enhance productivity, yet its molecular drivers remain poorly understood. Here, we have explored the mechanisms that underpin this metabolic shift through two case studies, illustrating environmental- and genetic-driven factors. We characterised these study cases at process, metabolic and transcriptomic levels. Our findings indicate that glutamine depletion coincided with the timing of the lactate metabolic shift, significantly affecting cell growth, productivity and overall metabolism. Transcriptome analysis revealed dynamic regulation the ATF4 pathway, involved in the amino acid (starvation) response, where glutamine depletion activates ATF4 gene and its targets. Manipulating ATF4 expression through overexpression and knockdown experiments showed significant changes in metabolism of glutamine and lactate, impacting cellular performance. Overexpression of ATF4 increased cell growth and glutamine consumption, promoting a lactate metabolic shift. In contrast, ATF4 downregulation decreased cell proliferation and glutamine uptake, leading to production of lactate without any signs of lactate shift. These findings underscore a critical role for ATF4 in regulation of glutamine and lactate metabolism, related to phasic patterns of growth during CHO cell culture. This study offers unique insight into metabolic reprogramming during the lactate metabolic shift and the molecular drivers that determine cell status during culture.</p>\",\"PeriodicalId\":18483,\"journal\":{\"name\":\"Metabolic engineering\",\"volume\":\" \",\"pages\":\"25-39\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metabolic engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ymben.2024.12.001\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.ymben.2024.12.001","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

乳酸代谢在哺乳动物细胞的生物加工过程中起着至关重要的作用,影响细胞的性能和生产力。从乳酸生产到消耗的转变,被称为乳酸代谢转变,是非常有益的,并已被证明可以延长培养寿命和提高生产力,但其分子驱动因素仍然知之甚少。在这里,我们通过两个案例研究探讨了支撑这种代谢转变的机制,说明了环境和遗传驱动因素。我们在过程、代谢和转录组水平上描述了这些研究病例。我们的研究结果表明,谷氨酰胺耗竭与乳酸代谢转变的时间一致,显著影响细胞生长、生产力和整体代谢。转录组分析揭示了ATF4通路的动态调控,参与氨基酸(饥饿)反应,其中谷氨酰胺耗尽激活ATF4基因及其靶标。通过过表达和敲低实验操纵ATF4表达,发现谷氨酰胺和乳酸代谢发生显著变化,影响细胞性能。ATF4过表达增加细胞生长和谷氨酰胺消耗,促进乳酸代谢转变。相反,ATF4的下调降低了细胞增殖和谷氨酰胺的摄取,导致乳酸的产生,而没有任何乳酸转移的迹象。这些发现强调了ATF4在调节谷氨酰胺和乳酸代谢中的关键作用,这与CHO细胞培养过程中生长的阶段性模式有关。这项研究提供了独特的见解代谢重编程在乳酸代谢转变和分子驱动决定细胞状态在培养过程中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deciphering molecular drivers of lactate metabolic shift in mammalian cell cultures.

Lactate metabolism plays a critical role in mammalian cell bioprocessing, influencing cellular performance and productivity. The transition from lactate production to consumption, known as lactate metabolic shift, is highly beneficial and has been shown to extend culture lifespan and enhance productivity, yet its molecular drivers remain poorly understood. Here, we have explored the mechanisms that underpin this metabolic shift through two case studies, illustrating environmental- and genetic-driven factors. We characterised these study cases at process, metabolic and transcriptomic levels. Our findings indicate that glutamine depletion coincided with the timing of the lactate metabolic shift, significantly affecting cell growth, productivity and overall metabolism. Transcriptome analysis revealed dynamic regulation the ATF4 pathway, involved in the amino acid (starvation) response, where glutamine depletion activates ATF4 gene and its targets. Manipulating ATF4 expression through overexpression and knockdown experiments showed significant changes in metabolism of glutamine and lactate, impacting cellular performance. Overexpression of ATF4 increased cell growth and glutamine consumption, promoting a lactate metabolic shift. In contrast, ATF4 downregulation decreased cell proliferation and glutamine uptake, leading to production of lactate without any signs of lactate shift. These findings underscore a critical role for ATF4 in regulation of glutamine and lactate metabolism, related to phasic patterns of growth during CHO cell culture. This study offers unique insight into metabolic reprogramming during the lactate metabolic shift and the molecular drivers that determine cell status during culture.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Metabolic engineering
Metabolic engineering 工程技术-生物工程与应用微生物
CiteScore
15.60
自引率
6.00%
发文量
140
审稿时长
44 days
期刊介绍: Metabolic Engineering (MBE) is a journal that focuses on publishing original research papers on the directed modulation of metabolic pathways for metabolite overproduction or the enhancement of cellular properties. It welcomes papers that describe the engineering of native pathways and the synthesis of heterologous pathways to convert microorganisms into microbial cell factories. The journal covers experimental, computational, and modeling approaches for understanding metabolic pathways and manipulating them through genetic, media, or environmental means. Effective exploration of metabolic pathways necessitates the use of molecular biology and biochemistry methods, as well as engineering techniques for modeling and data analysis. MBE serves as a platform for interdisciplinary research in fields such as biochemistry, molecular biology, applied microbiology, cellular physiology, cellular nutrition in health and disease, and biochemical engineering. The journal publishes various types of papers, including original research papers and review papers. It is indexed and abstracted in databases such as Scopus, Embase, EMBiology, Current Contents - Life Sciences and Clinical Medicine, Science Citation Index, PubMed/Medline, CAS and Biotechnology Citation Index.
期刊最新文献
Prenol production in a microbial host via the "Repass" Pathways. Exploring and increased acetate biosynthesis in Synechocystis PCC 6803 through insertion of a heterologous phosphoketolase and overexpressing phosphotransacetylase. Introduction of acetyl-phosphate bypass and increased culture temperatures enhanced growth-coupled poly-hydroxybutyrate production in the marine cyanobacterium Synechococcus sp. PCC7002. Biosynthesis of 10-Hydroxy-2-Decenoic Acid in Escherichia coli. Unleashing the innate ability of Escherichia coli to produce D-Allose.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1