ChromTR:通过变形变压器在原始中期细胞图像中检测染色体。

IF 3.9 3区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Frontiers of Medicine Pub Date : 2024-12-01 Epub Date: 2024-12-07 DOI:10.1007/s11684-024-1098-y
Chao Xia, Jiyue Wang, Xin You, Yaling Fan, Bing Chen, Saijuan Chen, Jie Yang
{"title":"ChromTR:通过变形变压器在原始中期细胞图像中检测染色体。","authors":"Chao Xia, Jiyue Wang, Xin You, Yaling Fan, Bing Chen, Saijuan Chen, Jie Yang","doi":"10.1007/s11684-024-1098-y","DOIUrl":null,"url":null,"abstract":"<p><p>Chromosome karyotyping is a critical way to diagnose various hematological malignancies and genetic diseases, of which chromosome detection in raw metaphase cell images is the most critical and challenging step. In this work, focusing on the joint optimization of chromosome localization and classification, we propose ChromTR to accurately detect and classify 24 classes of chromosomes in raw metaphase cell images. ChromTR incorporates semantic feature learning and class distribution learning into a unified DETR-based detection framework. Specifically, we first propose a Semantic Feature Learning Network (SFLN) for semantic feature extraction and chromosome foreground region segmentation with object-wise supervision. Next, we construct a Semantic-Aware Transformer (SAT) with two parallel encoders and a Semantic-Aware decoder to integrate global visual and semantic features. To provide a prediction with a precise chromosome number and category distribution, a Category Distribution Reasoning Module (CDRM) is built for foreground-background objects and chromosome class distribution reasoning. We evaluate ChromTR on 1404 newly collected R-band metaphase images and the public G-band dataset AutoKary2022. Our proposed ChromTR outperforms all previous chromosome detection methods with an average precision of 92.56% in R-band chromosome detection, surpassing the baseline method by 3.02%. In a clinical test, ChromTR is also confident in tackling normal and numerically abnormal karyotypes. When extended to the chromosome enumeration task, ChromTR also demonstrates state-of-the-art performances on R-band and G-band two metaphase image datasets. Given these superior performances to other methods, our proposed method has been applied to assist clinical karyotype diagnosis.</p>","PeriodicalId":12558,"journal":{"name":"Frontiers of Medicine","volume":" ","pages":"1100-1114"},"PeriodicalIF":3.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ChromTR: chromosome detection in raw metaphase cell images via deformable transformers.\",\"authors\":\"Chao Xia, Jiyue Wang, Xin You, Yaling Fan, Bing Chen, Saijuan Chen, Jie Yang\",\"doi\":\"10.1007/s11684-024-1098-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chromosome karyotyping is a critical way to diagnose various hematological malignancies and genetic diseases, of which chromosome detection in raw metaphase cell images is the most critical and challenging step. In this work, focusing on the joint optimization of chromosome localization and classification, we propose ChromTR to accurately detect and classify 24 classes of chromosomes in raw metaphase cell images. ChromTR incorporates semantic feature learning and class distribution learning into a unified DETR-based detection framework. Specifically, we first propose a Semantic Feature Learning Network (SFLN) for semantic feature extraction and chromosome foreground region segmentation with object-wise supervision. Next, we construct a Semantic-Aware Transformer (SAT) with two parallel encoders and a Semantic-Aware decoder to integrate global visual and semantic features. To provide a prediction with a precise chromosome number and category distribution, a Category Distribution Reasoning Module (CDRM) is built for foreground-background objects and chromosome class distribution reasoning. We evaluate ChromTR on 1404 newly collected R-band metaphase images and the public G-band dataset AutoKary2022. Our proposed ChromTR outperforms all previous chromosome detection methods with an average precision of 92.56% in R-band chromosome detection, surpassing the baseline method by 3.02%. In a clinical test, ChromTR is also confident in tackling normal and numerically abnormal karyotypes. When extended to the chromosome enumeration task, ChromTR also demonstrates state-of-the-art performances on R-band and G-band two metaphase image datasets. Given these superior performances to other methods, our proposed method has been applied to assist clinical karyotype diagnosis.</p>\",\"PeriodicalId\":12558,\"journal\":{\"name\":\"Frontiers of Medicine\",\"volume\":\" \",\"pages\":\"1100-1114\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11684-024-1098-y\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11684-024-1098-y","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

染色体核型是诊断各种血液学恶性肿瘤和遗传病的重要手段,其中中期细胞原始图像的染色体检测是最关键和最具挑战性的一步。在这项工作中,我们着眼于染色体定位和分类的联合优化,我们提出了ChromTR来准确地检测和分类中期细胞原始图像中的24类染色体。ChromTR将语义特征学习和类分布学习结合到统一的基于der的检测框架中。具体来说,我们首先提出了一种语义特征学习网络(SFLN),用于语义特征提取和染色体前景区域分割。接下来,我们构建了一个具有两个并行编码器和一个语义感知解码器的语义感知转换器(SAT),以集成全局视觉和语义特征。为了提供精确的染色体数目和类别分布预测,构建了一个类别分布推理模块(CDRM),用于前景-背景对象和染色体类别分布推理。我们在1404张新收集的r波段中期图像和公开的g波段数据集AutoKary2022上评估了ChromTR。我们提出的ChromTR在r波段染色体检测中平均精度为92.56%,优于以往所有的染色体检测方法,比基线方法高出3.02%。在临床试验中,ChromTR在处理正常和数字异常核型方面也很有信心。当扩展到染色体枚举任务时,ChromTR在r波段和g波段两个中期图像数据集上也展示了最先进的性能。鉴于这些优于其他方法的性能,我们提出的方法已被应用于辅助临床核型诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ChromTR: chromosome detection in raw metaphase cell images via deformable transformers.

Chromosome karyotyping is a critical way to diagnose various hematological malignancies and genetic diseases, of which chromosome detection in raw metaphase cell images is the most critical and challenging step. In this work, focusing on the joint optimization of chromosome localization and classification, we propose ChromTR to accurately detect and classify 24 classes of chromosomes in raw metaphase cell images. ChromTR incorporates semantic feature learning and class distribution learning into a unified DETR-based detection framework. Specifically, we first propose a Semantic Feature Learning Network (SFLN) for semantic feature extraction and chromosome foreground region segmentation with object-wise supervision. Next, we construct a Semantic-Aware Transformer (SAT) with two parallel encoders and a Semantic-Aware decoder to integrate global visual and semantic features. To provide a prediction with a precise chromosome number and category distribution, a Category Distribution Reasoning Module (CDRM) is built for foreground-background objects and chromosome class distribution reasoning. We evaluate ChromTR on 1404 newly collected R-band metaphase images and the public G-band dataset AutoKary2022. Our proposed ChromTR outperforms all previous chromosome detection methods with an average precision of 92.56% in R-band chromosome detection, surpassing the baseline method by 3.02%. In a clinical test, ChromTR is also confident in tackling normal and numerically abnormal karyotypes. When extended to the chromosome enumeration task, ChromTR also demonstrates state-of-the-art performances on R-band and G-band two metaphase image datasets. Given these superior performances to other methods, our proposed method has been applied to assist clinical karyotype diagnosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers of Medicine
Frontiers of Medicine ONCOLOGYMEDICINE, RESEARCH & EXPERIMENTAL&-MEDICINE, RESEARCH & EXPERIMENTAL
CiteScore
18.30
自引率
0.00%
发文量
800
期刊介绍: Frontiers of Medicine is an international general medical journal sponsored by the Ministry of Education of China. The journal is jointly published by the Higher Education Press and Springer. Since the first issue of 2010, this journal has been indexed in PubMed/MEDLINE. Frontiers of Medicine is dedicated to publishing original research and review articles on the latest advances in clinical and basic medicine with a focus on epidemiology, traditional Chinese medicine, translational research, healthcare, public health and health policies.
期刊最新文献
CHAF1B promotes the progression of lung squamous-cell carcinoma by inhibiting SETD7 expression. Inhibition of cap-dependent endonuclease in influenza virus with ADC189: a pre-clinical analysis and phase I trial. Intracellular concentration of ADA2 is a marker for monocyte differentiation and activation. Unlocking therapeutic potential: antibacterial therapy for CRB1-associated retinal degeneration in Rd8 mice. Cardiomyocyte-specific long noncoding RNA Trdn-as induces mitochondrial calcium overload by promoting the m6A modification of calsequestrin 2 in diabetic cardiomyopathy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1