Intracellular concentration of ADA2 is a marker for monocyte differentiation and activation.

IF 3.9 3区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Frontiers of Medicine Pub Date : 2025-01-20 DOI:10.1007/s11684-024-1110-6
Liang Dong, Bingtai Lu, Wenwen Luo, Xiaoqiong Gu, Chengxiang Wu, Luca Trotta, Mikko Seppanen, Yuxia Zhang, Andrey V Zavialov
{"title":"Intracellular concentration of ADA2 is a marker for monocyte differentiation and activation.","authors":"Liang Dong, Bingtai Lu, Wenwen Luo, Xiaoqiong Gu, Chengxiang Wu, Luca Trotta, Mikko Seppanen, Yuxia Zhang, Andrey V Zavialov","doi":"10.1007/s11684-024-1110-6","DOIUrl":null,"url":null,"abstract":"<p><p>Adenosine, a critical molecule regulating cellular function both inside and outside cells, is controlled by two human adenosine deaminases: ADA1 and ADA2. While ADA1 primarily resides in the cytoplasm, ADA2 can be transported to lysosomes within cells or secreted outside the cell. Patients with ADA2 deficiency (DADA2) often suffer from systemic vasculitis due to elevated levels of TNF-α in their blood. Monocytes from DADA2 patients exhibit excessive TNF-α secretion and differentiate into pro-inflammatory M1-type macrophages. Our findings demonstrate that ADA2 localizes to endolysosomes within macrophages, and its intracellular concentration decreases in cells secreting TNF-α. This suggests that ADA2 may function as a lysosomal adenosine deaminase, regulating TNF-α expression by the cells. Interestingly, pneumonia patients exhibit higher ADA2 concentrations in their bronchoalveolar lavage (BAL), correlating with elevated pro-inflammatory cytokine levels. Conversely, cord blood has low ADA2 levels, creating a more immunosuppressive environment. Additionally, secreted ADA2 can bind to apoptotic cells, activating immune cells by reducing extracellular adenosine levels. These findings imply that ADA2 release from monocytes during inflammation, triggered by growth factors, may be crucial for cell activation. Targeting intracellular and extracellular ADA2 activities could pave the way for novel therapies in inflammatory and autoimmune disorders.</p>","PeriodicalId":12558,"journal":{"name":"Frontiers of Medicine","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11684-024-1110-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Adenosine, a critical molecule regulating cellular function both inside and outside cells, is controlled by two human adenosine deaminases: ADA1 and ADA2. While ADA1 primarily resides in the cytoplasm, ADA2 can be transported to lysosomes within cells or secreted outside the cell. Patients with ADA2 deficiency (DADA2) often suffer from systemic vasculitis due to elevated levels of TNF-α in their blood. Monocytes from DADA2 patients exhibit excessive TNF-α secretion and differentiate into pro-inflammatory M1-type macrophages. Our findings demonstrate that ADA2 localizes to endolysosomes within macrophages, and its intracellular concentration decreases in cells secreting TNF-α. This suggests that ADA2 may function as a lysosomal adenosine deaminase, regulating TNF-α expression by the cells. Interestingly, pneumonia patients exhibit higher ADA2 concentrations in their bronchoalveolar lavage (BAL), correlating with elevated pro-inflammatory cytokine levels. Conversely, cord blood has low ADA2 levels, creating a more immunosuppressive environment. Additionally, secreted ADA2 can bind to apoptotic cells, activating immune cells by reducing extracellular adenosine levels. These findings imply that ADA2 release from monocytes during inflammation, triggered by growth factors, may be crucial for cell activation. Targeting intracellular and extracellular ADA2 activities could pave the way for novel therapies in inflammatory and autoimmune disorders.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
细胞内ADA2浓度是单核细胞分化和活化的标志。
腺苷是调节细胞内外细胞功能的关键分子,由两种人类腺苷脱氨酶ADA1和ADA2控制。虽然ADA1主要存在于细胞质中,但ADA2可以被运输到细胞内的溶酶体或分泌到细胞外。由于血液中TNF-α水平升高,ADA2缺乏症(DADA2)患者经常患有全身性血管炎。DADA2患者单核细胞分泌过多TNF-α,分化为促炎m1型巨噬细胞。我们的研究结果表明,ADA2定位于巨噬细胞内的内溶酶体,在分泌TNF-α的细胞中,其细胞内浓度降低。这表明ADA2可能作为溶酶体腺苷脱氨酶,调节细胞中TNF-α的表达。有趣的是,肺炎患者支气管肺泡灌洗液(BAL)中ADA2浓度较高,与促炎细胞因子水平升高相关。相反,脐带血的ADA2水平较低,造成了更强的免疫抑制环境。此外,分泌的ADA2可以与凋亡细胞结合,通过降低细胞外腺苷水平激活免疫细胞。这些发现表明,在炎症期间,由生长因子触发的单核细胞释放ADA2可能对细胞活化至关重要。靶向细胞内和细胞外ADA2活性可以为炎症和自身免疫性疾病的新疗法铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers of Medicine
Frontiers of Medicine ONCOLOGYMEDICINE, RESEARCH & EXPERIMENTAL&-MEDICINE, RESEARCH & EXPERIMENTAL
CiteScore
18.30
自引率
0.00%
发文量
800
期刊介绍: Frontiers of Medicine is an international general medical journal sponsored by the Ministry of Education of China. The journal is jointly published by the Higher Education Press and Springer. Since the first issue of 2010, this journal has been indexed in PubMed/MEDLINE. Frontiers of Medicine is dedicated to publishing original research and review articles on the latest advances in clinical and basic medicine with a focus on epidemiology, traditional Chinese medicine, translational research, healthcare, public health and health policies.
期刊最新文献
Inhibition of cap-dependent endonuclease in influenza virus with ADC189: a pre-clinical analysis and phase I trial. Intracellular concentration of ADA2 is a marker for monocyte differentiation and activation. Unlocking therapeutic potential: antibacterial therapy for CRB1-associated retinal degeneration in Rd8 mice. Cardiomyocyte-specific long noncoding RNA Trdn-as induces mitochondrial calcium overload by promoting the m6A modification of calsequestrin 2 in diabetic cardiomyopathy. Metabolism and metabolomics in senescence, aging, and age-related diseases: a multiscale perspective.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1