Xiangru Zhou, Kun Cao, Jinhao Meng, Hongwei Xu, Xiaofu Zhou
{"title":"独角麦内酯调节杜鹃花酚酸积累,从而提高其对UV-B胁迫的耐受性。","authors":"Xiangru Zhou, Kun Cao, Jinhao Meng, Hongwei Xu, Xiaofu Zhou","doi":"10.1007/s00299-024-03393-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>Multi-omics studies have shown that strigolactone modulates phenolic acid accumulation in the leaves of R. chrysanthum and can enable it to cope with UV-B stress. UV-B stress is an abiotic stress that plants will inevitably suffer during growth and can seriously affect the normal physiological state of plants. Strigolactone, a phytohormone, has been less studied and it is important to investigate its regulation of plant growth under UV-B radiation. In the present study, we investigated the changes in leaves of Rhododendron chrysanthum Pall. (R. chrysanthum) under UV-B radiation. The leaves of R. chrysanthum were collected for widely targeted metabolomics, hormonomics, transcriptomics, proteomics and acetylated proteomics assays. The results showed that the leaves of R. chrysanthum were able to produce a large amount of differential phenolic acids with antioxidant effects under UV-B stress, the content of strigolactone was significantly elevated, and the genes and proteins involved in phenolic acid biosynthesis and strigolactone biosynthesis were significantly altered, and some of the proteins (ASP1, 4CLL7, and CCD1) underwent acetylation modification. Meanwhile, correlation analysis showed that strigolactone was strongly correlated with differential phenolic acids, which might regulate the adaptive responses of the R. chrysanthum under UV-B stress. In this paper, we investigated the effects of strigolactone on the accumulation of phenolic acid compounds and found a strong correlation between strigolactone and elevated phenolic acid levels, which provided insights into the molecular mechanism of plant regulation of phenolic acid accumulation, and facilitated the adoption of measures to mitigate the adverse effects of UV-B stress on plant growth, and to achieve the purpose of protecting plant germplasm resources.</p>","PeriodicalId":20204,"journal":{"name":"Plant Cell Reports","volume":"44 1","pages":"1"},"PeriodicalIF":5.3000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strigolactone modulates phenolic acid accumulation and thereby improves tolerance to UV-B stress in Rhododendron chrysanthum Pall.\",\"authors\":\"Xiangru Zhou, Kun Cao, Jinhao Meng, Hongwei Xu, Xiaofu Zhou\",\"doi\":\"10.1007/s00299-024-03393-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Key message: </strong>Multi-omics studies have shown that strigolactone modulates phenolic acid accumulation in the leaves of R. chrysanthum and can enable it to cope with UV-B stress. UV-B stress is an abiotic stress that plants will inevitably suffer during growth and can seriously affect the normal physiological state of plants. Strigolactone, a phytohormone, has been less studied and it is important to investigate its regulation of plant growth under UV-B radiation. In the present study, we investigated the changes in leaves of Rhododendron chrysanthum Pall. (R. chrysanthum) under UV-B radiation. The leaves of R. chrysanthum were collected for widely targeted metabolomics, hormonomics, transcriptomics, proteomics and acetylated proteomics assays. The results showed that the leaves of R. chrysanthum were able to produce a large amount of differential phenolic acids with antioxidant effects under UV-B stress, the content of strigolactone was significantly elevated, and the genes and proteins involved in phenolic acid biosynthesis and strigolactone biosynthesis were significantly altered, and some of the proteins (ASP1, 4CLL7, and CCD1) underwent acetylation modification. Meanwhile, correlation analysis showed that strigolactone was strongly correlated with differential phenolic acids, which might regulate the adaptive responses of the R. chrysanthum under UV-B stress. In this paper, we investigated the effects of strigolactone on the accumulation of phenolic acid compounds and found a strong correlation between strigolactone and elevated phenolic acid levels, which provided insights into the molecular mechanism of plant regulation of phenolic acid accumulation, and facilitated the adoption of measures to mitigate the adverse effects of UV-B stress on plant growth, and to achieve the purpose of protecting plant germplasm resources.</p>\",\"PeriodicalId\":20204,\"journal\":{\"name\":\"Plant Cell Reports\",\"volume\":\"44 1\",\"pages\":\"1\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Cell Reports\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00299-024-03393-7\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00299-024-03393-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Strigolactone modulates phenolic acid accumulation and thereby improves tolerance to UV-B stress in Rhododendron chrysanthum Pall.
Key message: Multi-omics studies have shown that strigolactone modulates phenolic acid accumulation in the leaves of R. chrysanthum and can enable it to cope with UV-B stress. UV-B stress is an abiotic stress that plants will inevitably suffer during growth and can seriously affect the normal physiological state of plants. Strigolactone, a phytohormone, has been less studied and it is important to investigate its regulation of plant growth under UV-B radiation. In the present study, we investigated the changes in leaves of Rhododendron chrysanthum Pall. (R. chrysanthum) under UV-B radiation. The leaves of R. chrysanthum were collected for widely targeted metabolomics, hormonomics, transcriptomics, proteomics and acetylated proteomics assays. The results showed that the leaves of R. chrysanthum were able to produce a large amount of differential phenolic acids with antioxidant effects under UV-B stress, the content of strigolactone was significantly elevated, and the genes and proteins involved in phenolic acid biosynthesis and strigolactone biosynthesis were significantly altered, and some of the proteins (ASP1, 4CLL7, and CCD1) underwent acetylation modification. Meanwhile, correlation analysis showed that strigolactone was strongly correlated with differential phenolic acids, which might regulate the adaptive responses of the R. chrysanthum under UV-B stress. In this paper, we investigated the effects of strigolactone on the accumulation of phenolic acid compounds and found a strong correlation between strigolactone and elevated phenolic acid levels, which provided insights into the molecular mechanism of plant regulation of phenolic acid accumulation, and facilitated the adoption of measures to mitigate the adverse effects of UV-B stress on plant growth, and to achieve the purpose of protecting plant germplasm resources.
期刊介绍:
Plant Cell Reports publishes original, peer-reviewed articles on new advances in all aspects of plant cell science, plant genetics and molecular biology. Papers selected for publication contribute significant new advances to clearly identified technological problems and/or biological questions. The articles will prove relevant beyond the narrow topic of interest to a readership with broad scientific background. The coverage includes such topics as:
- genomics and genetics
- metabolism
- cell biology
- abiotic and biotic stress
- phytopathology
- gene transfer and expression
- molecular pharming
- systems biology
- nanobiotechnology
- genome editing
- phenomics and synthetic biology
The journal also publishes opinion papers, review and focus articles on the latest developments and new advances in research and technology in plant molecular biology and biotechnology.