{"title":"基因敲除LINC01405的人胚胎干细胞系的产生与表征","authors":"Yaping Xu, Hongchun Wu, Jingxiu Jiang, Lingqun Ye, Kaili Hao, Kunjun Han, Shijun Hu, Wei Lei, Zhikun Guo","doi":"10.1016/j.scr.2024.103619","DOIUrl":null,"url":null,"abstract":"<p><p>Long Intergenic Non-Protein Coding RNA 1405 (LINC01405), with known elevated expression in muscle, has been linked to a number of musculo-skeletal conditions. By utilizing the CRISPR/Cas9 gene editing system, we generated a LINC01405 knockout human embryonic stem cell (hESC) line. This line remains human stem cell-like morphology and pluripotency, exhibits a normal karyotype, and can differentiate into cells from all three germ layers. This cell line will be an invaluable model for the research on LINC01405's role in normal development of cardiac and skeletal muscle, and their diseases.</p>","PeriodicalId":21843,"journal":{"name":"Stem cell research","volume":"82 ","pages":"103619"},"PeriodicalIF":0.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generation and characterization of the LINC01405 knockout human embryonic stem cell line.\",\"authors\":\"Yaping Xu, Hongchun Wu, Jingxiu Jiang, Lingqun Ye, Kaili Hao, Kunjun Han, Shijun Hu, Wei Lei, Zhikun Guo\",\"doi\":\"10.1016/j.scr.2024.103619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Long Intergenic Non-Protein Coding RNA 1405 (LINC01405), with known elevated expression in muscle, has been linked to a number of musculo-skeletal conditions. By utilizing the CRISPR/Cas9 gene editing system, we generated a LINC01405 knockout human embryonic stem cell (hESC) line. This line remains human stem cell-like morphology and pluripotency, exhibits a normal karyotype, and can differentiate into cells from all three germ layers. This cell line will be an invaluable model for the research on LINC01405's role in normal development of cardiac and skeletal muscle, and their diseases.</p>\",\"PeriodicalId\":21843,\"journal\":{\"name\":\"Stem cell research\",\"volume\":\"82 \",\"pages\":\"103619\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stem cell research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.scr.2024.103619\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem cell research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.scr.2024.103619","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Generation and characterization of the LINC01405 knockout human embryonic stem cell line.
Long Intergenic Non-Protein Coding RNA 1405 (LINC01405), with known elevated expression in muscle, has been linked to a number of musculo-skeletal conditions. By utilizing the CRISPR/Cas9 gene editing system, we generated a LINC01405 knockout human embryonic stem cell (hESC) line. This line remains human stem cell-like morphology and pluripotency, exhibits a normal karyotype, and can differentiate into cells from all three germ layers. This cell line will be an invaluable model for the research on LINC01405's role in normal development of cardiac and skeletal muscle, and their diseases.
期刊介绍:
Stem Cell Research is dedicated to publishing high-quality manuscripts focusing on the biology and applications of stem cell research. Submissions to Stem Cell Research, may cover all aspects of stem cells, including embryonic stem cells, tissue-specific stem cells, cancer stem cells, developmental studies, stem cell genomes, and translational research. Stem Cell Research publishes 6 issues a year.