{"title":"用于高输出液滴能量采集器的场效应增强双电层","authors":"Dinh Cong Nguyen , Minh Chien Nguyen , Duy Tho Pham , Zhengbing Ding , Seongmin Na , Hakjeong Kim , Kyunwho Choi , Dukhyun Choi","doi":"10.1016/j.nanoen.2024.110560","DOIUrl":null,"url":null,"abstract":"<div><div>The underlying principle of droplet energy generation, which involves contact electrification and droplet-based electricity, has gained significant traction in converting raindrop energy in recent years. The efficiency of power harvesting is highly dependent on the contact area, requiring the droplet to spread maximally across the device's surface. However, other droplet dynamics, such as sliding and dripping, have been underutilized in previous research. In this work, we introduce a novel design that leverages the field effect to enhance electric double layer for high output droplet energy harvester, capturing both negative and positive charges to generate electricity. Additionally, electrons produced during the contact electrification process can be stored on a floating electrode within the device, creating a high electrical potential that further enhances electricity generation through the electric double layer capacitance at the water-metal interface. Remarkably, without the need for pre-charging or grounding the top electrode, this field effect enhanced droplet energy harvesting can achieve voltages exceeding 430 V and currents over 1 mA using a 60 μL tap-water droplet. Moreover, our device demonstrates continuous energy harvesting during sliding motion, highlighting its potential for large-scale applications, such as in panel configurations. The novel mechanism and technology presented in this work offer significant advancements in the understanding and practical implementation of droplet energy harvesting.</div></div>","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":"134 ","pages":"Article 110560"},"PeriodicalIF":16.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Field effect enhanced electric double layer for high-output droplet energy harvester\",\"authors\":\"Dinh Cong Nguyen , Minh Chien Nguyen , Duy Tho Pham , Zhengbing Ding , Seongmin Na , Hakjeong Kim , Kyunwho Choi , Dukhyun Choi\",\"doi\":\"10.1016/j.nanoen.2024.110560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The underlying principle of droplet energy generation, which involves contact electrification and droplet-based electricity, has gained significant traction in converting raindrop energy in recent years. The efficiency of power harvesting is highly dependent on the contact area, requiring the droplet to spread maximally across the device's surface. However, other droplet dynamics, such as sliding and dripping, have been underutilized in previous research. In this work, we introduce a novel design that leverages the field effect to enhance electric double layer for high output droplet energy harvester, capturing both negative and positive charges to generate electricity. Additionally, electrons produced during the contact electrification process can be stored on a floating electrode within the device, creating a high electrical potential that further enhances electricity generation through the electric double layer capacitance at the water-metal interface. Remarkably, without the need for pre-charging or grounding the top electrode, this field effect enhanced droplet energy harvesting can achieve voltages exceeding 430 V and currents over 1 mA using a 60 μL tap-water droplet. Moreover, our device demonstrates continuous energy harvesting during sliding motion, highlighting its potential for large-scale applications, such as in panel configurations. The novel mechanism and technology presented in this work offer significant advancements in the understanding and practical implementation of droplet energy harvesting.</div></div>\",\"PeriodicalId\":394,\"journal\":{\"name\":\"Nano Energy\",\"volume\":\"134 \",\"pages\":\"Article 110560\"},\"PeriodicalIF\":16.8000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211285524013120\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Energy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211285524013120","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Field effect enhanced electric double layer for high-output droplet energy harvester
The underlying principle of droplet energy generation, which involves contact electrification and droplet-based electricity, has gained significant traction in converting raindrop energy in recent years. The efficiency of power harvesting is highly dependent on the contact area, requiring the droplet to spread maximally across the device's surface. However, other droplet dynamics, such as sliding and dripping, have been underutilized in previous research. In this work, we introduce a novel design that leverages the field effect to enhance electric double layer for high output droplet energy harvester, capturing both negative and positive charges to generate electricity. Additionally, electrons produced during the contact electrification process can be stored on a floating electrode within the device, creating a high electrical potential that further enhances electricity generation through the electric double layer capacitance at the water-metal interface. Remarkably, without the need for pre-charging or grounding the top electrode, this field effect enhanced droplet energy harvesting can achieve voltages exceeding 430 V and currents over 1 mA using a 60 μL tap-water droplet. Moreover, our device demonstrates continuous energy harvesting during sliding motion, highlighting its potential for large-scale applications, such as in panel configurations. The novel mechanism and technology presented in this work offer significant advancements in the understanding and practical implementation of droplet energy harvesting.
期刊介绍:
Nano Energy is a multidisciplinary, rapid-publication forum of original peer-reviewed contributions on the science and engineering of nanomaterials and nanodevices used in all forms of energy harvesting, conversion, storage, utilization and policy. Through its mixture of articles, reviews, communications, research news, and information on key developments, Nano Energy provides a comprehensive coverage of this exciting and dynamic field which joins nanoscience and nanotechnology with energy science. The journal is relevant to all those who are interested in nanomaterials solutions to the energy problem.
Nano Energy publishes original experimental and theoretical research on all aspects of energy-related research which utilizes nanomaterials and nanotechnology. Manuscripts of four types are considered: review articles which inform readers of the latest research and advances in energy science; rapid communications which feature exciting research breakthroughs in the field; full-length articles which report comprehensive research developments; and news and opinions which comment on topical issues or express views on the developments in related fields.