人突触前高亲和胆碱转运体CHT1的离子偶联及抑制机制

IF 4.4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Structure Pub Date : 2024-12-09 DOI:10.1016/j.str.2024.11.009
Yunlong Qiu, Yiwei Gao, Qinru Bai, Yan Zhao
{"title":"人突触前高亲和胆碱转运体CHT1的离子偶联及抑制机制","authors":"Yunlong Qiu, Yiwei Gao, Qinru Bai, Yan Zhao","doi":"10.1016/j.str.2024.11.009","DOIUrl":null,"url":null,"abstract":"In cholinergic neurons, choline is the precursor of the excitatory neurotransmitter acetylcholine (ACh), which plays a fundamental role in the brain. The high-affinity choline transporter, CHT1, mediates the efficient recycling of choline to facilitate ACh synthesis in the presynapse. Here, we report high-resolution cryoelectron microscopic (cryo-EM) structures of CHT1 in complex with the inhibitors HC-3 and ML352, the substrate choline, and a substrate-free state. Our structures show distinct binding modes of the inhibitors with different chemical structures, revealing their inhibition mechanisms. Additionally, we observed a chloride ion that directly interacts with the substrate choline, thereby stabilizing its binding with CHT1. Two sodium ions, Na2 and Na3, were clearly identified, which we speculate might be involved in substrate binding and conformational transitions, respectively. Our structures provide molecular insights into the coupling mechanism of ion binding with substrate binding and conformational transitions, promoting our understanding of the ion-coupled substrate transport mechanism.","PeriodicalId":22168,"journal":{"name":"Structure","volume":"20 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ion coupling and inhibitory mechanisms of the human presynaptic high-affinity choline transporter CHT1\",\"authors\":\"Yunlong Qiu, Yiwei Gao, Qinru Bai, Yan Zhao\",\"doi\":\"10.1016/j.str.2024.11.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In cholinergic neurons, choline is the precursor of the excitatory neurotransmitter acetylcholine (ACh), which plays a fundamental role in the brain. The high-affinity choline transporter, CHT1, mediates the efficient recycling of choline to facilitate ACh synthesis in the presynapse. Here, we report high-resolution cryoelectron microscopic (cryo-EM) structures of CHT1 in complex with the inhibitors HC-3 and ML352, the substrate choline, and a substrate-free state. Our structures show distinct binding modes of the inhibitors with different chemical structures, revealing their inhibition mechanisms. Additionally, we observed a chloride ion that directly interacts with the substrate choline, thereby stabilizing its binding with CHT1. Two sodium ions, Na2 and Na3, were clearly identified, which we speculate might be involved in substrate binding and conformational transitions, respectively. Our structures provide molecular insights into the coupling mechanism of ion binding with substrate binding and conformational transitions, promoting our understanding of the ion-coupled substrate transport mechanism.\",\"PeriodicalId\":22168,\"journal\":{\"name\":\"Structure\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structure\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.str.2024.11.009\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structure","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.str.2024.11.009","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在胆碱能神经元中,胆碱是兴奋性神经递质乙酰胆碱(ACh)的前体,乙酰胆碱在大脑中起着重要作用。高亲和力的胆碱转运体CHT1介导胆碱的有效循环,促进突触前乙酰胆碱的合成。在这里,我们报道了CHT1与抑制剂HC-3和ML352、底物胆碱和底物无状态配合物的高分辨率冷冻电镜(cryo-EM)结构。我们的结构显示出不同化学结构的抑制剂的不同结合模式,揭示了它们的抑制机制。此外,我们观察到氯离子直接与底物胆碱相互作用,从而稳定其与CHT1的结合。两个钠离子Na2和Na3被清楚地识别出来,我们推测它们可能分别参与了底物结合和构象转变。我们的结构为离子结合与底物结合和构象转变的耦合机制提供了分子视角,促进了我们对离子耦合底物运输机制的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ion coupling and inhibitory mechanisms of the human presynaptic high-affinity choline transporter CHT1
In cholinergic neurons, choline is the precursor of the excitatory neurotransmitter acetylcholine (ACh), which plays a fundamental role in the brain. The high-affinity choline transporter, CHT1, mediates the efficient recycling of choline to facilitate ACh synthesis in the presynapse. Here, we report high-resolution cryoelectron microscopic (cryo-EM) structures of CHT1 in complex with the inhibitors HC-3 and ML352, the substrate choline, and a substrate-free state. Our structures show distinct binding modes of the inhibitors with different chemical structures, revealing their inhibition mechanisms. Additionally, we observed a chloride ion that directly interacts with the substrate choline, thereby stabilizing its binding with CHT1. Two sodium ions, Na2 and Na3, were clearly identified, which we speculate might be involved in substrate binding and conformational transitions, respectively. Our structures provide molecular insights into the coupling mechanism of ion binding with substrate binding and conformational transitions, promoting our understanding of the ion-coupled substrate transport mechanism.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Structure
Structure 生物-生化与分子生物学
CiteScore
8.90
自引率
1.80%
发文量
155
审稿时长
3-8 weeks
期刊介绍: Structure aims to publish papers of exceptional interest in the field of structural biology. The journal strives to be essential reading for structural biologists, as well as biologists and biochemists that are interested in macromolecular structure and function. Structure strongly encourages the submission of manuscripts that present structural and molecular insights into biological function and mechanism. Other reports that address fundamental questions in structural biology, such as structure-based examinations of protein evolution, folding, and/or design, will also be considered. We will consider the application of any method, experimental or computational, at high or low resolution, to conduct structural investigations, as long as the method is appropriate for the biological, functional, and mechanistic question(s) being addressed. Likewise, reports describing single-molecule analysis of biological mechanisms are welcome. In general, the editors encourage submission of experimental structural studies that are enriched by an analysis of structure-activity relationships and will not consider studies that solely report structural information unless the structure or analysis is of exceptional and broad interest. Studies reporting only homology models, de novo models, or molecular dynamics simulations are also discouraged unless the models are informed by or validated by novel experimental data; rationalization of a large body of existing experimental evidence and making testable predictions based on a model or simulation is often not considered sufficient.
期刊最新文献
The ABC transporter MsbA in a dozen environments HuR prevents amyloid beta-induced phase separation of miRNA-bound Ago2 to RNA-processing bodies Fine-tuned structural modifications enable specific drug design against multidrug-resistant pathogens The structure of the R2T complex reveals a different architecture from the related HSP90 cochaperone R2TP Structural basis for the RNA binding properties of mouse IGF2BP3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1