褪黑素合成酶编码基因ASMT介导杨树对干旱胁迫和真菌的抗性。

IF 2.6 3区 生物学 Q2 GENETICS & HEREDITY Gene Pub Date : 2025-02-10 Epub Date: 2024-12-06 DOI:10.1016/j.gene.2024.149154
Peizhi Yu, Xia Tang, Banglan Chen, Zihao Chen, Wenli Cui, Yuhang Xing, Ying Li, Fangfang Zhang, Juan B Barroso, Lucas Gutierrez Rodriguez, Yinan Yao, Yongfeng Gao
{"title":"褪黑素合成酶编码基因ASMT介导杨树对干旱胁迫和真菌的抗性。","authors":"Peizhi Yu, Xia Tang, Banglan Chen, Zihao Chen, Wenli Cui, Yuhang Xing, Ying Li, Fangfang Zhang, Juan B Barroso, Lucas Gutierrez Rodriguez, Yinan Yao, Yongfeng Gao","doi":"10.1016/j.gene.2024.149154","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, the increase in extreme climates, such as persistent high temperatures and drought, has adversely affected the growth and development of fast-growing trees. Melatonin (MT) plays an important role in plant responses to biotic and abiotic stresses, yet there is a lack of research on the specific role of limiting enzyme genes for MT biosynthesis in fast-growing woody plants. In this study, we investigated the function of PtoASMT, a key rate-limiting enzyme encoding gene for MT biosynthesis, which can be induced by drought, salt, and the phytohormones ABA, SA and JA. Our results show that: (1) PtoASMT was widely expressed in all tissues of poplar, but was highly expressed in petioles, moderately expressed in roots, stems, shoots and young leaves, exhibiting a typical diurnal expression rhythm in leaves, with the encoded protein localized on chloroplasts; (2) the content of MT was significantly promoted in overexpressing PtoASMT transgenic poplar plants, but there were no obvious differences in their growth and development; (3) overexpressing PtoASMT plants exhibited stronger drought tolerance, accumulating less reactive oxygen species (ROS) under drought stress relative to wild-type plants, whereas knockout PtoASMT plants were more sensitive and accumulated more ROS; (4) overexpressing PtoASMT plants were more resistant to fungi Dothiorella gregaria than WT plants, while knockout plants showed higher sensitivity; meanwhile, the expression of disease resistance-related genes (PRs and JAZ10) was significantly altered. We conclude that PtoASMT enhances the resistance of poplar to drought and Dothiorella gregaria by mediating MT biosynthesis in poplar. These findings contribute to a better understanding the role of ASMT gene in MT accumulation and stress resistance in poplar.</p>","PeriodicalId":12499,"journal":{"name":"Gene","volume":" ","pages":"149154"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The melatonin synthase-encoding gene ASMT mediates poplar resistance to drought stress and fungi Dothiorella gregaria.\",\"authors\":\"Peizhi Yu, Xia Tang, Banglan Chen, Zihao Chen, Wenli Cui, Yuhang Xing, Ying Li, Fangfang Zhang, Juan B Barroso, Lucas Gutierrez Rodriguez, Yinan Yao, Yongfeng Gao\",\"doi\":\"10.1016/j.gene.2024.149154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In recent years, the increase in extreme climates, such as persistent high temperatures and drought, has adversely affected the growth and development of fast-growing trees. Melatonin (MT) plays an important role in plant responses to biotic and abiotic stresses, yet there is a lack of research on the specific role of limiting enzyme genes for MT biosynthesis in fast-growing woody plants. In this study, we investigated the function of PtoASMT, a key rate-limiting enzyme encoding gene for MT biosynthesis, which can be induced by drought, salt, and the phytohormones ABA, SA and JA. Our results show that: (1) PtoASMT was widely expressed in all tissues of poplar, but was highly expressed in petioles, moderately expressed in roots, stems, shoots and young leaves, exhibiting a typical diurnal expression rhythm in leaves, with the encoded protein localized on chloroplasts; (2) the content of MT was significantly promoted in overexpressing PtoASMT transgenic poplar plants, but there were no obvious differences in their growth and development; (3) overexpressing PtoASMT plants exhibited stronger drought tolerance, accumulating less reactive oxygen species (ROS) under drought stress relative to wild-type plants, whereas knockout PtoASMT plants were more sensitive and accumulated more ROS; (4) overexpressing PtoASMT plants were more resistant to fungi Dothiorella gregaria than WT plants, while knockout plants showed higher sensitivity; meanwhile, the expression of disease resistance-related genes (PRs and JAZ10) was significantly altered. We conclude that PtoASMT enhances the resistance of poplar to drought and Dothiorella gregaria by mediating MT biosynthesis in poplar. These findings contribute to a better understanding the role of ASMT gene in MT accumulation and stress resistance in poplar.</p>\",\"PeriodicalId\":12499,\"journal\":{\"name\":\"Gene\",\"volume\":\" \",\"pages\":\"149154\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gene\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.gene.2024.149154\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gene","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.gene.2024.149154","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

近年来,极端气候的增加,如持续的高温和干旱,对速生树木的生长发育产生了不利影响。褪黑素(Melatonin, MT)在植物对生物和非生物胁迫的响应中发挥重要作用,但速生木本植物中褪黑素生物合成限制酶基因的具体作用研究尚缺乏。在本研究中,我们研究了MT生物合成的关键限速酶编码基因PtoASMT的功能,该基因可以被干旱、盐和植物激素ABA、SA和JA诱导。结果表明:(1)PtoASMT在杨树各组织中广泛表达,但在叶柄中表达量高,在根、茎、芽和幼叶中表达量适中,在叶片中表现出典型的日表达节律,编码蛋白定位于叶绿体;(2)过表达toasmt转基因杨树植株的MT含量显著提高,但其生长发育无明显差异;(3)过表达PtoASMT的植株抗旱性较强,在干旱胁迫下积累的活性氧(ROS)较少,而敲除PtoASMT的植株更敏感,积累的ROS更多;(4)过表达PtoASMT植株对灰多硫霉的抗性强于WT植株,而基因敲除植株对灰多硫霉的敏感性高于WT植株;同时,抗病相关基因PRs和JAZ10的表达显著改变。我们认为,PtoASMT通过介导MT在杨树体内的生物合成,增强了杨树对干旱和多硫霉的抗性。这些发现有助于更好地理解ASMT基因在杨树MT积累和抗逆性中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The melatonin synthase-encoding gene ASMT mediates poplar resistance to drought stress and fungi Dothiorella gregaria.

In recent years, the increase in extreme climates, such as persistent high temperatures and drought, has adversely affected the growth and development of fast-growing trees. Melatonin (MT) plays an important role in plant responses to biotic and abiotic stresses, yet there is a lack of research on the specific role of limiting enzyme genes for MT biosynthesis in fast-growing woody plants. In this study, we investigated the function of PtoASMT, a key rate-limiting enzyme encoding gene for MT biosynthesis, which can be induced by drought, salt, and the phytohormones ABA, SA and JA. Our results show that: (1) PtoASMT was widely expressed in all tissues of poplar, but was highly expressed in petioles, moderately expressed in roots, stems, shoots and young leaves, exhibiting a typical diurnal expression rhythm in leaves, with the encoded protein localized on chloroplasts; (2) the content of MT was significantly promoted in overexpressing PtoASMT transgenic poplar plants, but there were no obvious differences in their growth and development; (3) overexpressing PtoASMT plants exhibited stronger drought tolerance, accumulating less reactive oxygen species (ROS) under drought stress relative to wild-type plants, whereas knockout PtoASMT plants were more sensitive and accumulated more ROS; (4) overexpressing PtoASMT plants were more resistant to fungi Dothiorella gregaria than WT plants, while knockout plants showed higher sensitivity; meanwhile, the expression of disease resistance-related genes (PRs and JAZ10) was significantly altered. We conclude that PtoASMT enhances the resistance of poplar to drought and Dothiorella gregaria by mediating MT biosynthesis in poplar. These findings contribute to a better understanding the role of ASMT gene in MT accumulation and stress resistance in poplar.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Gene
Gene 生物-遗传学
CiteScore
6.10
自引率
2.90%
发文量
718
审稿时长
42 days
期刊介绍: Gene publishes papers that focus on the regulation, expression, function and evolution of genes in all biological contexts, including all prokaryotic and eukaryotic organisms, as well as viruses.
期刊最新文献
The expression and function of Gpnmb in lymphatic endothelial cells. Serum Galectin-9 mirrors immune-evasive microenvironment and predicts early recurrence in hepatocellular carcinoma. Incidence of alternative splicing associated with sex and opioid effects in the axon guidance pathway. VAMP8 as a biomarker and potential therapeutic target for endothelial cell dysfunction in atherosclerosis. Deciphering genomic basis of unique adaptation of Ladakhi cattle to Trans-Himalayan high-altitude region of Leh-Ladakh in India.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1