同步吸气与连续振动网状雾化器在成人有创机械通气中的体外比较。

IF 2 4区 医学 Q3 RESPIRATORY SYSTEM Journal of Aerosol Medicine and Pulmonary Drug Delivery Pub Date : 2024-12-09 DOI:10.1089/jamp.2024.0047
Jie Li, Caylie A Sheridan, Osama Alanazi, James B Fink
{"title":"同步吸气与连续振动网状雾化器在成人有创机械通气中的体外比较。","authors":"Jie Li, Caylie A Sheridan, Osama Alanazi, James B Fink","doi":"10.1089/jamp.2024.0047","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Background:</i></b> Aerosol delivery may be enhanced by utilizing an inspiration-synchronized nebulization mode, where nebulization occurs only during inspiration. This study aimed to compare aerosol delivery of albuterol via a prototype of an inspiration-synchronized vibrating mesh nebulizer (VMN) versus continuous VMN during invasive mechanical ventilation. <b><i>Methods:</i></b> A critical care ventilator equipped with a heated-wire circuit to deliver adult parameters was attached to an endotracheal tube (ETT), a collection filter, and a test lung. The nebulizer was placed at the humidifier's inlet, inspiratory limb at the Y-piece, and between the Y-piece and ETT. Conventional VMNs producing standard size aerosol particles (Solo; Aerogen Ltd) were compared with prototype small-particle VMNs (Aerogen Pharma) in both inspiration-synchronization and continuous modes. In each run, 1 mL of albuterol (2.5 mg) was used (<i>n</i> = 5). The drug was eluted from the collection filter and assayed with UV spectrophotometry (276 nm). <b><i>Results:</i></b> The inhaled dose with inspiration-synchronization mode was 1.4 to 3.6 times that with the continuous mode, regardless of nebulizer positions (all <i>p</i> < 0.001). The small-particle VMN delivered an 8%-69% greater inhaled dose than the conventional VMN (Solo), regardless of the nebulizer placement or aerosol generation mode (all <i>p</i> < 0.001). The highest inhaled dose (50%-60%) with the inspiration-synchronized VMN was observed when it was placed at the ETT (all <i>p</i> < 0.001), whereas the continuous VMN performed better when positioned near the humidifier, with an inhaled dose of 21%-37% (<i>p</i> < 0.001). <b><i>Conclusion:</i></b> The inspiration-synchronized VMN delivered a greater inhaled dose than continuous VMN, irrespective of nebulizer placement. The prototype VMN producing smaller aerosol particles resulted in a greater inhaled dose than the conventional VMN (Solo), regardless of placement or aerosol generation modes. The inspiration-synchronized VMN achieved the highest delivery when placed close to the airway, whereas the continuous VMN delivered the most when positioned near the ventilator.</p>","PeriodicalId":14940,"journal":{"name":"Journal of Aerosol Medicine and Pulmonary Drug Delivery","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"<i>In Vitro</i> Comparison of Inspiration-Synchronized and Continuous Vibrating Mesh Nebulizer During Adult Invasive Mechanical Ventilation.\",\"authors\":\"Jie Li, Caylie A Sheridan, Osama Alanazi, James B Fink\",\"doi\":\"10.1089/jamp.2024.0047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b><i>Background:</i></b> Aerosol delivery may be enhanced by utilizing an inspiration-synchronized nebulization mode, where nebulization occurs only during inspiration. This study aimed to compare aerosol delivery of albuterol via a prototype of an inspiration-synchronized vibrating mesh nebulizer (VMN) versus continuous VMN during invasive mechanical ventilation. <b><i>Methods:</i></b> A critical care ventilator equipped with a heated-wire circuit to deliver adult parameters was attached to an endotracheal tube (ETT), a collection filter, and a test lung. The nebulizer was placed at the humidifier's inlet, inspiratory limb at the Y-piece, and between the Y-piece and ETT. Conventional VMNs producing standard size aerosol particles (Solo; Aerogen Ltd) were compared with prototype small-particle VMNs (Aerogen Pharma) in both inspiration-synchronization and continuous modes. In each run, 1 mL of albuterol (2.5 mg) was used (<i>n</i> = 5). The drug was eluted from the collection filter and assayed with UV spectrophotometry (276 nm). <b><i>Results:</i></b> The inhaled dose with inspiration-synchronization mode was 1.4 to 3.6 times that with the continuous mode, regardless of nebulizer positions (all <i>p</i> < 0.001). The small-particle VMN delivered an 8%-69% greater inhaled dose than the conventional VMN (Solo), regardless of the nebulizer placement or aerosol generation mode (all <i>p</i> < 0.001). The highest inhaled dose (50%-60%) with the inspiration-synchronized VMN was observed when it was placed at the ETT (all <i>p</i> < 0.001), whereas the continuous VMN performed better when positioned near the humidifier, with an inhaled dose of 21%-37% (<i>p</i> < 0.001). <b><i>Conclusion:</i></b> The inspiration-synchronized VMN delivered a greater inhaled dose than continuous VMN, irrespective of nebulizer placement. The prototype VMN producing smaller aerosol particles resulted in a greater inhaled dose than the conventional VMN (Solo), regardless of placement or aerosol generation modes. The inspiration-synchronized VMN achieved the highest delivery when placed close to the airway, whereas the continuous VMN delivered the most when positioned near the ventilator.</p>\",\"PeriodicalId\":14940,\"journal\":{\"name\":\"Journal of Aerosol Medicine and Pulmonary Drug Delivery\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Aerosol Medicine and Pulmonary Drug Delivery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/jamp.2024.0047\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RESPIRATORY SYSTEM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aerosol Medicine and Pulmonary Drug Delivery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/jamp.2024.0047","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
引用次数: 0

摘要

背景:气溶胶输送可以通过利用吸气同步雾化模式来增强,其中雾化仅在吸气期间发生。本研究旨在比较在有创机械通气期间,通过吸气同步振动网状雾化器(VMN)的原型与连续VMN的沙丁胺醇气溶胶输送。方法:将重症监护呼吸机与气管内管(ETT)、收集过滤器和试验肺连接,该呼吸机配有用于传递成人参数的热丝电路。雾化器放置在加湿器入口,吸气肢放置在y片,y片与ETT之间。产生标准尺寸气溶胶颗粒的传统VMNs (Solo;在吸气同步模式和连续模式下,对Aerogen Ltd)和原型小颗粒VMNs (Aerogen Pharma)进行了比较。每组用沙丁胺醇(2.5 mg) 1 mL (n = 5)。从收集滤池中洗脱药物,用紫外分光光度法(276 nm)测定。结果:不论雾化器位置如何,同步吸入模式的吸入剂量是连续吸入模式的1.4 ~ 3.6倍(均p < 0.001)。无论雾化器位置或气溶胶产生方式如何,小颗粒VMN的吸入剂量比传统VMN (Solo)高8%-69%(均p < 0.001)。当吸入同步VMN放置在ETT时,观察到吸入剂量最高(50%-60%)(均p < 0.001),而连续VMN放置在加湿器附近时表现更好,吸入剂量为21%-37% (p < 0.001)。结论:吸入同步VMN比连续VMN的吸入剂量更大,与雾化器位置无关。无论放置位置或气溶胶产生模式如何,产生较小气溶胶颗粒的原型VMN比传统VMN (Solo)吸入剂量更大。吸气同步式VMN靠近气道时的输送量最大,而连续式VMN靠近呼吸机时的输送量最大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
In Vitro Comparison of Inspiration-Synchronized and Continuous Vibrating Mesh Nebulizer During Adult Invasive Mechanical Ventilation.

Background: Aerosol delivery may be enhanced by utilizing an inspiration-synchronized nebulization mode, where nebulization occurs only during inspiration. This study aimed to compare aerosol delivery of albuterol via a prototype of an inspiration-synchronized vibrating mesh nebulizer (VMN) versus continuous VMN during invasive mechanical ventilation. Methods: A critical care ventilator equipped with a heated-wire circuit to deliver adult parameters was attached to an endotracheal tube (ETT), a collection filter, and a test lung. The nebulizer was placed at the humidifier's inlet, inspiratory limb at the Y-piece, and between the Y-piece and ETT. Conventional VMNs producing standard size aerosol particles (Solo; Aerogen Ltd) were compared with prototype small-particle VMNs (Aerogen Pharma) in both inspiration-synchronization and continuous modes. In each run, 1 mL of albuterol (2.5 mg) was used (n = 5). The drug was eluted from the collection filter and assayed with UV spectrophotometry (276 nm). Results: The inhaled dose with inspiration-synchronization mode was 1.4 to 3.6 times that with the continuous mode, regardless of nebulizer positions (all p < 0.001). The small-particle VMN delivered an 8%-69% greater inhaled dose than the conventional VMN (Solo), regardless of the nebulizer placement or aerosol generation mode (all p < 0.001). The highest inhaled dose (50%-60%) with the inspiration-synchronized VMN was observed when it was placed at the ETT (all p < 0.001), whereas the continuous VMN performed better when positioned near the humidifier, with an inhaled dose of 21%-37% (p < 0.001). Conclusion: The inspiration-synchronized VMN delivered a greater inhaled dose than continuous VMN, irrespective of nebulizer placement. The prototype VMN producing smaller aerosol particles resulted in a greater inhaled dose than the conventional VMN (Solo), regardless of placement or aerosol generation modes. The inspiration-synchronized VMN achieved the highest delivery when placed close to the airway, whereas the continuous VMN delivered the most when positioned near the ventilator.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.70
自引率
2.90%
发文量
34
审稿时长
>12 weeks
期刊介绍: Journal of Aerosol Medicine and Pulmonary Drug Delivery is the only peer-reviewed journal delivering innovative, authoritative coverage of the health effects of inhaled aerosols and delivery of drugs through the pulmonary system. The Journal is a forum for leading experts, addressing novel topics such as aerosolized chemotherapy, aerosolized vaccines, methods to determine toxicities, and delivery of aerosolized drugs in the intubated patient. Journal of Aerosol Medicine and Pulmonary Drug Delivery coverage includes: Pulmonary drug delivery Airway reactivity and asthma treatment Inhalation of particles and gases in the respiratory tract Toxic effects of inhaled agents Aerosols as tools for studying basic physiologic phenomena.
期刊最新文献
Characterization of Spray-Dried Powders Using a Coated Alberta Idealized Nasal Inlet. In Vitro Comparison of Inspiration-Synchronized and Continuous Vibrating Mesh Nebulizer During Adult Invasive Mechanical Ventilation. Prospects of Inhalable Formulations of Conventionally Administered Repurposed Drugs for Adjunctive Treatment of Drug-Resistant Tuberculosis: Supporting Evidence from Clinical Trials and Cohort Studies. Scale-Up and Postapproval Changes in Orally Inhaled Drug Products: Scientific and Regulatory Considerations. Assessing Human Lung Pharmacokinetics Using Exhaled Breath Particles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1