Huibin Yang, Minhui Xu, Honghui He, Nan Zeng, Jiawei Song, Tongyu Huang, Ziyang Liang, Hui Ma
{"title":"穆勒矩阵偏振法定量评价跟腱损伤恢复。","authors":"Huibin Yang, Minhui Xu, Honghui He, Nan Zeng, Jiawei Song, Tongyu Huang, Ziyang Liang, Hui Ma","doi":"10.1007/s12200-024-00142-2","DOIUrl":null,"url":null,"abstract":"<p><p>Achilles tendon injuries, as a widely existing disease, have attracted a lot of research interest. Mueller matrix polarimetry, as a novel label-free quantitative imaging method, has been widely used in various applications of lesion identification and pathological diagnosis. However, focusing on the recovery process of Achilles tendon injuries, current optical imaging methods have not yet achieved the label-free precise identification and quantitative evaluation. In this study, using Mueller matrix polarimetry, various Achilles tendon injury samples were characterized specifically, and the efficacy of different recovery schemes was evaluated accordingly. Experiments indicate that injured Achilles tendons show less phase retardance, larger diattenuation, and relatively disordered orientation. The combination of experiments with Monte Carlo simulation results illustrate the microscopic mechanism of the Achilles tendon recovery process from three aspects, that is, the increased fiber diameter, a more consistent fiber orientation, and greater birefringence induced by more collagen protein. Finally, based on the statistical distribution of polarization measurements, a polarization specific characterization parameter was extracted to construct a label-free image, which cannot only intuitively show the injury and recovery of Achilles tendon samples, but also give a quantitative evaluation of the treatment.</p>","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":"17 1","pages":"39"},"PeriodicalIF":4.1000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11625706/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mueller matrix polarimetry for quantitative evaluation of the Achilles tendon injury recovery.\",\"authors\":\"Huibin Yang, Minhui Xu, Honghui He, Nan Zeng, Jiawei Song, Tongyu Huang, Ziyang Liang, Hui Ma\",\"doi\":\"10.1007/s12200-024-00142-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Achilles tendon injuries, as a widely existing disease, have attracted a lot of research interest. Mueller matrix polarimetry, as a novel label-free quantitative imaging method, has been widely used in various applications of lesion identification and pathological diagnosis. However, focusing on the recovery process of Achilles tendon injuries, current optical imaging methods have not yet achieved the label-free precise identification and quantitative evaluation. In this study, using Mueller matrix polarimetry, various Achilles tendon injury samples were characterized specifically, and the efficacy of different recovery schemes was evaluated accordingly. Experiments indicate that injured Achilles tendons show less phase retardance, larger diattenuation, and relatively disordered orientation. The combination of experiments with Monte Carlo simulation results illustrate the microscopic mechanism of the Achilles tendon recovery process from three aspects, that is, the increased fiber diameter, a more consistent fiber orientation, and greater birefringence induced by more collagen protein. Finally, based on the statistical distribution of polarization measurements, a polarization specific characterization parameter was extracted to construct a label-free image, which cannot only intuitively show the injury and recovery of Achilles tendon samples, but also give a quantitative evaluation of the treatment.</p>\",\"PeriodicalId\":12685,\"journal\":{\"name\":\"Frontiers of Optoelectronics\",\"volume\":\"17 1\",\"pages\":\"39\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11625706/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Optoelectronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12200-024-00142-2\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Optoelectronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12200-024-00142-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Mueller matrix polarimetry for quantitative evaluation of the Achilles tendon injury recovery.
Achilles tendon injuries, as a widely existing disease, have attracted a lot of research interest. Mueller matrix polarimetry, as a novel label-free quantitative imaging method, has been widely used in various applications of lesion identification and pathological diagnosis. However, focusing on the recovery process of Achilles tendon injuries, current optical imaging methods have not yet achieved the label-free precise identification and quantitative evaluation. In this study, using Mueller matrix polarimetry, various Achilles tendon injury samples were characterized specifically, and the efficacy of different recovery schemes was evaluated accordingly. Experiments indicate that injured Achilles tendons show less phase retardance, larger diattenuation, and relatively disordered orientation. The combination of experiments with Monte Carlo simulation results illustrate the microscopic mechanism of the Achilles tendon recovery process from three aspects, that is, the increased fiber diameter, a more consistent fiber orientation, and greater birefringence induced by more collagen protein. Finally, based on the statistical distribution of polarization measurements, a polarization specific characterization parameter was extracted to construct a label-free image, which cannot only intuitively show the injury and recovery of Achilles tendon samples, but also give a quantitative evaluation of the treatment.
期刊介绍:
Frontiers of Optoelectronics seeks to provide a multidisciplinary forum for a broad mix of peer-reviewed academic papers in order to promote rapid communication and exchange between researchers in China and abroad. It introduces and reflects significant achievements being made in the field of photonics or optoelectronics. The topics include, but are not limited to, semiconductor optoelectronics, nano-photonics, information photonics, energy photonics, ultrafast photonics, biomedical photonics, nonlinear photonics, fiber optics, laser and terahertz technology and intelligent photonics. The journal publishes reviews, research articles, letters, comments, special issues and so on.
Frontiers of Optoelectronics especially encourages papers from new emerging and multidisciplinary areas, papers reflecting the international trends of research and development, and on special topics reporting progress made in the field of optoelectronics. All published papers will reflect the original thoughts of researchers and practitioners on basic theories, design and new technology in optoelectronics.
Frontiers of Optoelectronics is strictly peer-reviewed and only accepts original submissions in English. It is a fully OA journal and the APCs are covered by Higher Education Press and Huazhong University of Science and Technology.
● Presents the latest developments in optoelectronics and optics
● Emphasizes the latest developments of new optoelectronic materials, devices, systems and applications
● Covers industrial photonics, information photonics, biomedical photonics, energy photonics, laser and terahertz technology, and more