Lorena Pérez-Carrillo, Irene González-Torrent, Isaac Giménez-Escamilla, Marta Delgado-Arija, Carlota Benedicto, Manuel Portolés, Estefanía Tarazón, Esther Roselló-Lletí
{"title":"循环pirna在心脏移植排斥诊断中的新作用。","authors":"Lorena Pérez-Carrillo, Irene González-Torrent, Isaac Giménez-Escamilla, Marta Delgado-Arija, Carlota Benedicto, Manuel Portolés, Estefanía Tarazón, Esther Roselló-Lletí","doi":"10.1016/j.healun.2024.11.039","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Liquid biopsy offers a potential alternative to decrease or eliminate endomyocardial biopsy for diagnosing allograft rejection. p-element-induced wimpy testis-interacting RNAs (piRNAs) are novel and promising disease biomarkers for their intrinsic characteristics such as stability in body fluids; however, their role in allograft rejection remains unexplored.</p><p><strong>Methods: </strong>A training set based on small RNA sequencing technology was performed to identify piRNAs in endomyocardial tissue (n = 8) and serum samples (n = 40) from patients following heart transplantation. A validation set of the potential piRNAs identified in the training study was conducted in an independent larger cohort for the detection of acute cellular rejection (ACR, n = 105) and antibody-mediated rejection (AMR, n = 61).</p><p><strong>Results: </strong>We identified 20,292 piRNAs in endomyocardial tissue and 24,602 piRNAs in serum samples from patients following heart transplantation. We identified 7 piRNAs with a coincident expression profile in both types of samples and potential capacity for the noninvasive detection of cardiac rejection. Validation in a large independent cohort demonstrated that a panel of these piRNAs showed excellent performance for detecting grade ≥2R ACR (area under the receiver operating characteristic curve [AUC] = 0.819; p < 0.0001) and grade 1R ACR (AUC = 0.721; p = 0.001). Furthermore, our piRNA panel showed a potential discrimination ability of pAMR2 (AUC = 0.967; p < 0.0001).</p><p><strong>Conclusions: </strong>To the best of knowledge, this study is the first to report the presence of piRNAs in both endomyocardial tissue and serum samples of patients after heart transplant, including their association with allograft rejection events. We propose a novel piRNA panel for the detection of cardiac allograft rejection.</p>","PeriodicalId":15900,"journal":{"name":"Journal of Heart and Lung Transplantation","volume":" ","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emerging role of circulating piRNAs in the diagnosis of heart transplant rejection.\",\"authors\":\"Lorena Pérez-Carrillo, Irene González-Torrent, Isaac Giménez-Escamilla, Marta Delgado-Arija, Carlota Benedicto, Manuel Portolés, Estefanía Tarazón, Esther Roselló-Lletí\",\"doi\":\"10.1016/j.healun.2024.11.039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Liquid biopsy offers a potential alternative to decrease or eliminate endomyocardial biopsy for diagnosing allograft rejection. p-element-induced wimpy testis-interacting RNAs (piRNAs) are novel and promising disease biomarkers for their intrinsic characteristics such as stability in body fluids; however, their role in allograft rejection remains unexplored.</p><p><strong>Methods: </strong>A training set based on small RNA sequencing technology was performed to identify piRNAs in endomyocardial tissue (n = 8) and serum samples (n = 40) from patients following heart transplantation. A validation set of the potential piRNAs identified in the training study was conducted in an independent larger cohort for the detection of acute cellular rejection (ACR, n = 105) and antibody-mediated rejection (AMR, n = 61).</p><p><strong>Results: </strong>We identified 20,292 piRNAs in endomyocardial tissue and 24,602 piRNAs in serum samples from patients following heart transplantation. We identified 7 piRNAs with a coincident expression profile in both types of samples and potential capacity for the noninvasive detection of cardiac rejection. Validation in a large independent cohort demonstrated that a panel of these piRNAs showed excellent performance for detecting grade ≥2R ACR (area under the receiver operating characteristic curve [AUC] = 0.819; p < 0.0001) and grade 1R ACR (AUC = 0.721; p = 0.001). Furthermore, our piRNA panel showed a potential discrimination ability of pAMR2 (AUC = 0.967; p < 0.0001).</p><p><strong>Conclusions: </strong>To the best of knowledge, this study is the first to report the presence of piRNAs in both endomyocardial tissue and serum samples of patients after heart transplant, including their association with allograft rejection events. We propose a novel piRNA panel for the detection of cardiac allograft rejection.</p>\",\"PeriodicalId\":15900,\"journal\":{\"name\":\"Journal of Heart and Lung Transplantation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Heart and Lung Transplantation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.healun.2024.11.039\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Heart and Lung Transplantation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.healun.2024.11.039","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Emerging role of circulating piRNAs in the diagnosis of heart transplant rejection.
Background: Liquid biopsy offers a potential alternative to decrease or eliminate endomyocardial biopsy for diagnosing allograft rejection. p-element-induced wimpy testis-interacting RNAs (piRNAs) are novel and promising disease biomarkers for their intrinsic characteristics such as stability in body fluids; however, their role in allograft rejection remains unexplored.
Methods: A training set based on small RNA sequencing technology was performed to identify piRNAs in endomyocardial tissue (n = 8) and serum samples (n = 40) from patients following heart transplantation. A validation set of the potential piRNAs identified in the training study was conducted in an independent larger cohort for the detection of acute cellular rejection (ACR, n = 105) and antibody-mediated rejection (AMR, n = 61).
Results: We identified 20,292 piRNAs in endomyocardial tissue and 24,602 piRNAs in serum samples from patients following heart transplantation. We identified 7 piRNAs with a coincident expression profile in both types of samples and potential capacity for the noninvasive detection of cardiac rejection. Validation in a large independent cohort demonstrated that a panel of these piRNAs showed excellent performance for detecting grade ≥2R ACR (area under the receiver operating characteristic curve [AUC] = 0.819; p < 0.0001) and grade 1R ACR (AUC = 0.721; p = 0.001). Furthermore, our piRNA panel showed a potential discrimination ability of pAMR2 (AUC = 0.967; p < 0.0001).
Conclusions: To the best of knowledge, this study is the first to report the presence of piRNAs in both endomyocardial tissue and serum samples of patients after heart transplant, including their association with allograft rejection events. We propose a novel piRNA panel for the detection of cardiac allograft rejection.
期刊介绍:
The Journal of Heart and Lung Transplantation, the official publication of the International Society for Heart and Lung Transplantation, brings readers essential scholarly and timely information in the field of cardio-pulmonary transplantation, mechanical and biological support of the failing heart, advanced lung disease (including pulmonary vascular disease) and cell replacement therapy. Importantly, the journal also serves as a medium of communication of pre-clinical sciences in all these rapidly expanding areas.