Dan Chen, Mengna Zhang, Yongtao He, Shuyuan Wu, Junzhe Kuang, Zixin Zhang, Biao Xu, Quan Fang
{"title":"神经肽FF在脊髓水平对吗啡镇痛的双重调节作用。","authors":"Dan Chen, Mengna Zhang, Yongtao He, Shuyuan Wu, Junzhe Kuang, Zixin Zhang, Biao Xu, Quan Fang","doi":"10.1016/j.neuroscience.2024.12.010","DOIUrl":null,"url":null,"abstract":"<p><p>Increasing evidence indicates that neuropeptide FF (NPFF) produces analgesic effects and augments opioid-induced analgesia at the spinal level. However, our recent research demonstrated that NPFF exerted complex opioid-modulating effects in an inflammatory pain model after intrathecal (i.t.) injection. Consistent with previous findings, we found that i.t. NPFF dose-dependently attenuated complete Freund's adjuvant-induced pain hypersensitivity. Interestingly, pharmacological results illustrated that NPFF exhibited opposite opioid-modulating effects at the spinal level depending on its administration dosage, wherein i.t. NPFF potentiated morphine-induced anti-allodynia at the dose of 10 nmol, while attenuated morphine analgesia at an ultra-low-dose of 10 pmol. Behavioral results obtained from neuropeptide FF receptor 2 (NPFFR2) knockout animals suggested that both pro- and anti-opioid effects of NPFF were mediated by NPFFR2. Moreover, these modulating effects of spinal NPFFR2 were selectively targeting mu-opioid receptor, had no effect on delta- and kappa-opioid receptor agonist-induced analgesia. Finally, the opioid-modulating effects of NPFF were further verified using in vitro calcium imaging assay, demonstrating that pretreated with NPFF in primary-cultured spinal neurons significantly attenuated the inhibitory effects of morphine on high-K<sup>+</sup>-induced neuronal excitability. Taken together, our results suggested that NPFF exhibited dual modulating effects on morphine-induced analgesia after i.t. administration, which provides a possible mechanism to explain the complex opioid-modulating effects of endogenous NPFF systems.</p>","PeriodicalId":19142,"journal":{"name":"Neuroscience","volume":" ","pages":"247-256"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The dual modulating effects of neuropeptide FF on morphine-induced analgesia at the spinal level.\",\"authors\":\"Dan Chen, Mengna Zhang, Yongtao He, Shuyuan Wu, Junzhe Kuang, Zixin Zhang, Biao Xu, Quan Fang\",\"doi\":\"10.1016/j.neuroscience.2024.12.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Increasing evidence indicates that neuropeptide FF (NPFF) produces analgesic effects and augments opioid-induced analgesia at the spinal level. However, our recent research demonstrated that NPFF exerted complex opioid-modulating effects in an inflammatory pain model after intrathecal (i.t.) injection. Consistent with previous findings, we found that i.t. NPFF dose-dependently attenuated complete Freund's adjuvant-induced pain hypersensitivity. Interestingly, pharmacological results illustrated that NPFF exhibited opposite opioid-modulating effects at the spinal level depending on its administration dosage, wherein i.t. NPFF potentiated morphine-induced anti-allodynia at the dose of 10 nmol, while attenuated morphine analgesia at an ultra-low-dose of 10 pmol. Behavioral results obtained from neuropeptide FF receptor 2 (NPFFR2) knockout animals suggested that both pro- and anti-opioid effects of NPFF were mediated by NPFFR2. Moreover, these modulating effects of spinal NPFFR2 were selectively targeting mu-opioid receptor, had no effect on delta- and kappa-opioid receptor agonist-induced analgesia. Finally, the opioid-modulating effects of NPFF were further verified using in vitro calcium imaging assay, demonstrating that pretreated with NPFF in primary-cultured spinal neurons significantly attenuated the inhibitory effects of morphine on high-K<sup>+</sup>-induced neuronal excitability. Taken together, our results suggested that NPFF exhibited dual modulating effects on morphine-induced analgesia after i.t. administration, which provides a possible mechanism to explain the complex opioid-modulating effects of endogenous NPFF systems.</p>\",\"PeriodicalId\":19142,\"journal\":{\"name\":\"Neuroscience\",\"volume\":\" \",\"pages\":\"247-256\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.neuroscience.2024.12.010\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuroscience.2024.12.010","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
The dual modulating effects of neuropeptide FF on morphine-induced analgesia at the spinal level.
Increasing evidence indicates that neuropeptide FF (NPFF) produces analgesic effects and augments opioid-induced analgesia at the spinal level. However, our recent research demonstrated that NPFF exerted complex opioid-modulating effects in an inflammatory pain model after intrathecal (i.t.) injection. Consistent with previous findings, we found that i.t. NPFF dose-dependently attenuated complete Freund's adjuvant-induced pain hypersensitivity. Interestingly, pharmacological results illustrated that NPFF exhibited opposite opioid-modulating effects at the spinal level depending on its administration dosage, wherein i.t. NPFF potentiated morphine-induced anti-allodynia at the dose of 10 nmol, while attenuated morphine analgesia at an ultra-low-dose of 10 pmol. Behavioral results obtained from neuropeptide FF receptor 2 (NPFFR2) knockout animals suggested that both pro- and anti-opioid effects of NPFF were mediated by NPFFR2. Moreover, these modulating effects of spinal NPFFR2 were selectively targeting mu-opioid receptor, had no effect on delta- and kappa-opioid receptor agonist-induced analgesia. Finally, the opioid-modulating effects of NPFF were further verified using in vitro calcium imaging assay, demonstrating that pretreated with NPFF in primary-cultured spinal neurons significantly attenuated the inhibitory effects of morphine on high-K+-induced neuronal excitability. Taken together, our results suggested that NPFF exhibited dual modulating effects on morphine-induced analgesia after i.t. administration, which provides a possible mechanism to explain the complex opioid-modulating effects of endogenous NPFF systems.
期刊介绍:
Neuroscience publishes papers describing the results of original research on any aspect of the scientific study of the nervous system. Any paper, however short, will be considered for publication provided that it reports significant, new and carefully confirmed findings with full experimental details.