借用历史偏差功率先验与经验贝叶斯。

IF 1.2 4区 医学 Q4 PHARMACOLOGY & PHARMACY Journal of Biopharmaceutical Statistics Pub Date : 2024-12-08 DOI:10.1080/10543406.2024.2429461
Hsin-Yu Lin, Elizabeth Slate
{"title":"借用历史偏差功率先验与经验贝叶斯。","authors":"Hsin-Yu Lin, Elizabeth Slate","doi":"10.1080/10543406.2024.2429461","DOIUrl":null,"url":null,"abstract":"<p><p>Adaptively incorporating historical information into analyses of current data can improve the precision of inference without requiring additional new observation. Unfortunately, not all borrowing methods are suitable when limited historical studies are available. When a single historical study is available, the power priors control the amount of information to borrow via specification of a weight parameter that discounts the contribution of the historical data in a likelihood combined with current data. We develop a new type of conditional power prior called the historical-bias power prior using an empirical Bayes approach. It relaxes the assumption of the traditional power priors to allow for historical bias. Moreover, our new weight function controls the amount of borrowing and only borrows when historical data satisfy the borrowing criteria. This is achieved by embedding the Frequentist test-then-pool approach in the weight function. Hence, the historical-bias power prior builds a bridge between the Frequentist test-then-pool and the Bayesian power prior. In the simulation, we examine the impact of historical bias on the operating characteristics for borrowing approaches, which has not been discussed in previous literature. The results show that the historical-bias power prior yields accurate estimation and robustly powerful tests for the experimental treatment effect with good type I error control, especially when historical bias exists.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"1-31"},"PeriodicalIF":1.2000,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Borrowing using historical-bias power prior with empirical Bayes.\",\"authors\":\"Hsin-Yu Lin, Elizabeth Slate\",\"doi\":\"10.1080/10543406.2024.2429461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Adaptively incorporating historical information into analyses of current data can improve the precision of inference without requiring additional new observation. Unfortunately, not all borrowing methods are suitable when limited historical studies are available. When a single historical study is available, the power priors control the amount of information to borrow via specification of a weight parameter that discounts the contribution of the historical data in a likelihood combined with current data. We develop a new type of conditional power prior called the historical-bias power prior using an empirical Bayes approach. It relaxes the assumption of the traditional power priors to allow for historical bias. Moreover, our new weight function controls the amount of borrowing and only borrows when historical data satisfy the borrowing criteria. This is achieved by embedding the Frequentist test-then-pool approach in the weight function. Hence, the historical-bias power prior builds a bridge between the Frequentist test-then-pool and the Bayesian power prior. In the simulation, we examine the impact of historical bias on the operating characteristics for borrowing approaches, which has not been discussed in previous literature. The results show that the historical-bias power prior yields accurate estimation and robustly powerful tests for the experimental treatment effect with good type I error control, especially when historical bias exists.</p>\",\"PeriodicalId\":54870,\"journal\":{\"name\":\"Journal of Biopharmaceutical Statistics\",\"volume\":\" \",\"pages\":\"1-31\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biopharmaceutical Statistics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10543406.2024.2429461\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biopharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10543406.2024.2429461","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

将历史信息适应性地纳入当前数据的分析中,可以提高推断的精确度,而不需要额外的新观察。遗憾的是,在历史研究有限的情况下,并非所有借用方法都适用。当只有一项历史研究时,幂先验通过指定一个权重参数来控制借用信息的数量,该权重参数会降低历史数据在与当前数据相结合的似然中的贡献。我们利用经验贝叶斯方法开发了一种新型的条件幂先验,称为历史偏差幂先验。它放宽了传统幂先验的假设,允许历史偏差。此外,我们的新权重函数可以控制借用量,只有当历史数据满足借用标准时才会借用。这是通过在权重函数中嵌入 Frequentist test-then-pool 方法实现的。因此,历史偏差幂先验在 Frequentist test-then-pool 和贝叶斯幂先验之间架起了一座桥梁。在模拟中,我们考察了历史偏差对借用方法运行特征的影响,这在以往的文献中没有讨论过。结果表明,历史偏差功率先验可以获得准确的估计和稳健有力的实验处理效应检验,并具有良好的 I 型误差控制,尤其是在存在历史偏差的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Borrowing using historical-bias power prior with empirical Bayes.

Adaptively incorporating historical information into analyses of current data can improve the precision of inference without requiring additional new observation. Unfortunately, not all borrowing methods are suitable when limited historical studies are available. When a single historical study is available, the power priors control the amount of information to borrow via specification of a weight parameter that discounts the contribution of the historical data in a likelihood combined with current data. We develop a new type of conditional power prior called the historical-bias power prior using an empirical Bayes approach. It relaxes the assumption of the traditional power priors to allow for historical bias. Moreover, our new weight function controls the amount of borrowing and only borrows when historical data satisfy the borrowing criteria. This is achieved by embedding the Frequentist test-then-pool approach in the weight function. Hence, the historical-bias power prior builds a bridge between the Frequentist test-then-pool and the Bayesian power prior. In the simulation, we examine the impact of historical bias on the operating characteristics for borrowing approaches, which has not been discussed in previous literature. The results show that the historical-bias power prior yields accurate estimation and robustly powerful tests for the experimental treatment effect with good type I error control, especially when historical bias exists.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biopharmaceutical Statistics
Journal of Biopharmaceutical Statistics 医学-统计学与概率论
CiteScore
2.50
自引率
18.20%
发文量
71
审稿时长
6-12 weeks
期刊介绍: The Journal of Biopharmaceutical Statistics, a rapid publication journal, discusses quality applications of statistics in biopharmaceutical research and development. Now publishing six times per year, it includes expositions of statistical methodology with immediate applicability to biopharmaceutical research in the form of full-length and short manuscripts, review articles, selected/invited conference papers, short articles, and letters to the editor. Addressing timely and provocative topics important to the biostatistical profession, the journal covers: Drug, device, and biological research and development; Drug screening and drug design; Assessment of pharmacological activity; Pharmaceutical formulation and scale-up; Preclinical safety assessment; Bioavailability, bioequivalence, and pharmacokinetics; Phase, I, II, and III clinical development including complex innovative designs; Premarket approval assessment of clinical safety; Postmarketing surveillance; Big data and artificial intelligence and applications.
期刊最新文献
Sequential monitoring of cancer immunotherapy trial with random delayed treatment effect. Directed Acyclic Graph Assisted Method For Estimating Average Treatment Effect. Bayesian phase II adaptive randomization by jointly modeling efficacy and toxicity as time-to-event outcomes. Interval estimation of relative risks for combined unilateral and bilateral correlated data. Sample size estimation for recurrent event data using multifrailty and multilevel survival models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1