Maryam Y. Garza , Tremaine Williams , Songthip Ounpraseuth , Zhuopei Hu , Jeannette Lee , Jessica Snowden , Anita C. Walden , Alan E. Simon , Lori A. Devlin , Leslie W. Young , Meredith N. Zozus
{"title":"临床研究中数据处理方法的错误率:通过PubMed识别的手稿的系统回顾和荟萃分析。","authors":"Maryam Y. Garza , Tremaine Williams , Songthip Ounpraseuth , Zhuopei Hu , Jeannette Lee , Jessica Snowden , Anita C. Walden , Alan E. Simon , Lori A. Devlin , Leslie W. Young , Meredith N. Zozus","doi":"10.1016/j.ijmedinf.2024.105749","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>In clinical research, prevention of data errors is paramount to ensuring reproducibility of trial results and the safety and efficacy of the resulting interventions. Over the last 40 years, empirical assessments of data accuracy in clinical research have been reported, however, there has been little systematic synthesis of these results. Although notable exceptions exist, little evidence exists regarding the relative accuracy of different data processing methods.</div></div><div><h3>Methods</h3><div>A systematic review of the literature identified through PubMed was performed to identify studies that evaluated the quality of data obtained through data processing methods typically used in clinical trials. Quantitative information on data accuracy was abstracted from the manuscripts and pooled. Meta-analysis of single proportions based on the Freeman-Tukey transformation method and the generalized linear mixed model approach were used to derive an overall estimate of error rates across data processing methods used in each study for comparison.</div></div><div><h3>Results</h3><div>A total of 93 papers (published from 1978 to 2008) meeting our inclusion criteria were categorized according to their data processing methods. The accuracy associated with data processing methods varied widely, with error rates ranging from 2 errors per 10,000 fields to 2,784 errors per 10,000 fields. MRA was associated with both high and highly variable error rates, having a pooled error rate of 6.57% (95% CI: 5.51, 7.72). In comparison, the pooled error rates for optical scanning, single-data entry, and double-data entry methods were 0.74% (0.21, 1.60), 0.29% (0.24, 0.35) and 0.14% (0.08, 0.20), respectively.</div></div><div><h3>Conclusions</h3><div>Data processing methods may explain a significant amount of the variability in data accuracy. MRA error rates, for example, were high enough to impact decisions made using the data and could necessitate increases in sample sizes to preserve statistical power. Thus, the choice of data processing methods can likely impact process capability and, ultimately, the validity of trial results.</div></div>","PeriodicalId":54950,"journal":{"name":"International Journal of Medical Informatics","volume":"195 ","pages":"Article 105749"},"PeriodicalIF":3.7000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Error rates of data processing methods in clinical research: A systematic review and meta-analysis of manuscripts identified through PubMed\",\"authors\":\"Maryam Y. Garza , Tremaine Williams , Songthip Ounpraseuth , Zhuopei Hu , Jeannette Lee , Jessica Snowden , Anita C. Walden , Alan E. Simon , Lori A. Devlin , Leslie W. Young , Meredith N. Zozus\",\"doi\":\"10.1016/j.ijmedinf.2024.105749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>In clinical research, prevention of data errors is paramount to ensuring reproducibility of trial results and the safety and efficacy of the resulting interventions. Over the last 40 years, empirical assessments of data accuracy in clinical research have been reported, however, there has been little systematic synthesis of these results. Although notable exceptions exist, little evidence exists regarding the relative accuracy of different data processing methods.</div></div><div><h3>Methods</h3><div>A systematic review of the literature identified through PubMed was performed to identify studies that evaluated the quality of data obtained through data processing methods typically used in clinical trials. Quantitative information on data accuracy was abstracted from the manuscripts and pooled. Meta-analysis of single proportions based on the Freeman-Tukey transformation method and the generalized linear mixed model approach were used to derive an overall estimate of error rates across data processing methods used in each study for comparison.</div></div><div><h3>Results</h3><div>A total of 93 papers (published from 1978 to 2008) meeting our inclusion criteria were categorized according to their data processing methods. The accuracy associated with data processing methods varied widely, with error rates ranging from 2 errors per 10,000 fields to 2,784 errors per 10,000 fields. MRA was associated with both high and highly variable error rates, having a pooled error rate of 6.57% (95% CI: 5.51, 7.72). In comparison, the pooled error rates for optical scanning, single-data entry, and double-data entry methods were 0.74% (0.21, 1.60), 0.29% (0.24, 0.35) and 0.14% (0.08, 0.20), respectively.</div></div><div><h3>Conclusions</h3><div>Data processing methods may explain a significant amount of the variability in data accuracy. MRA error rates, for example, were high enough to impact decisions made using the data and could necessitate increases in sample sizes to preserve statistical power. Thus, the choice of data processing methods can likely impact process capability and, ultimately, the validity of trial results.</div></div>\",\"PeriodicalId\":54950,\"journal\":{\"name\":\"International Journal of Medical Informatics\",\"volume\":\"195 \",\"pages\":\"Article 105749\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Medical Informatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S138650562400412X\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Medical Informatics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S138650562400412X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Error rates of data processing methods in clinical research: A systematic review and meta-analysis of manuscripts identified through PubMed
Background
In clinical research, prevention of data errors is paramount to ensuring reproducibility of trial results and the safety and efficacy of the resulting interventions. Over the last 40 years, empirical assessments of data accuracy in clinical research have been reported, however, there has been little systematic synthesis of these results. Although notable exceptions exist, little evidence exists regarding the relative accuracy of different data processing methods.
Methods
A systematic review of the literature identified through PubMed was performed to identify studies that evaluated the quality of data obtained through data processing methods typically used in clinical trials. Quantitative information on data accuracy was abstracted from the manuscripts and pooled. Meta-analysis of single proportions based on the Freeman-Tukey transformation method and the generalized linear mixed model approach were used to derive an overall estimate of error rates across data processing methods used in each study for comparison.
Results
A total of 93 papers (published from 1978 to 2008) meeting our inclusion criteria were categorized according to their data processing methods. The accuracy associated with data processing methods varied widely, with error rates ranging from 2 errors per 10,000 fields to 2,784 errors per 10,000 fields. MRA was associated with both high and highly variable error rates, having a pooled error rate of 6.57% (95% CI: 5.51, 7.72). In comparison, the pooled error rates for optical scanning, single-data entry, and double-data entry methods were 0.74% (0.21, 1.60), 0.29% (0.24, 0.35) and 0.14% (0.08, 0.20), respectively.
Conclusions
Data processing methods may explain a significant amount of the variability in data accuracy. MRA error rates, for example, were high enough to impact decisions made using the data and could necessitate increases in sample sizes to preserve statistical power. Thus, the choice of data processing methods can likely impact process capability and, ultimately, the validity of trial results.
期刊介绍:
International Journal of Medical Informatics provides an international medium for dissemination of original results and interpretative reviews concerning the field of medical informatics. The Journal emphasizes the evaluation of systems in healthcare settings.
The scope of journal covers:
Information systems, including national or international registration systems, hospital information systems, departmental and/or physician''s office systems, document handling systems, electronic medical record systems, standardization, systems integration etc.;
Computer-aided medical decision support systems using heuristic, algorithmic and/or statistical methods as exemplified in decision theory, protocol development, artificial intelligence, etc.
Educational computer based programs pertaining to medical informatics or medicine in general;
Organizational, economic, social, clinical impact, ethical and cost-benefit aspects of IT applications in health care.