通过大地蒸馏损失缓解 CLIP 引导图像变形中的稳定性-弹性困境

IF 11.6 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE International Journal of Computer Vision Pub Date : 2024-12-10 DOI:10.1007/s11263-024-02308-z
Yeongtak Oh, Saehyung Lee, Uiwon Hwang, Sungroh Yoon
{"title":"通过大地蒸馏损失缓解 CLIP 引导图像变形中的稳定性-弹性困境","authors":"Yeongtak Oh, Saehyung Lee, Uiwon Hwang, Sungroh Yoon","doi":"10.1007/s11263-024-02308-z","DOIUrl":null,"url":null,"abstract":"<p>Large-scale language-vision pre-training models, such as CLIP, have achieved remarkable results in text-guided image morphing by leveraging several unconditional generative models. However, existing CLIP-guided methods face challenges in achieving photorealistic morphing when adapting the generator from the source to the target domain. Specifically, current guidance methods fail to provide detailed explanations of the morphing regions within the image, leading to misguidance and catastrophic forgetting of the original image’s fidelity. In this paper, we propose a novel approach considering proper regularization losses to overcome these difficulties by addressing the SP dilemma in CLIP guidance. Our approach consists of two key components: (1) a geodesic cosine similarity loss that minimizes inter-modality features (i.e., image and text) in a projected subspace of CLIP space, and (2) a latent regularization loss that minimizes intra-modality features (i.e., image and image) on the image manifold. By replacing the naive directional CLIP loss in a drop-in replacement manner, our method achieves superior morphing results for both images and videos across various benchmarks, including CLIP-inversion.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"10 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Mitigating Stability-Plasticity Dilemma in CLIP-guided Image Morphing via Geodesic Distillation Loss\",\"authors\":\"Yeongtak Oh, Saehyung Lee, Uiwon Hwang, Sungroh Yoon\",\"doi\":\"10.1007/s11263-024-02308-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Large-scale language-vision pre-training models, such as CLIP, have achieved remarkable results in text-guided image morphing by leveraging several unconditional generative models. However, existing CLIP-guided methods face challenges in achieving photorealistic morphing when adapting the generator from the source to the target domain. Specifically, current guidance methods fail to provide detailed explanations of the morphing regions within the image, leading to misguidance and catastrophic forgetting of the original image’s fidelity. In this paper, we propose a novel approach considering proper regularization losses to overcome these difficulties by addressing the SP dilemma in CLIP guidance. Our approach consists of two key components: (1) a geodesic cosine similarity loss that minimizes inter-modality features (i.e., image and text) in a projected subspace of CLIP space, and (2) a latent regularization loss that minimizes intra-modality features (i.e., image and image) on the image manifold. By replacing the naive directional CLIP loss in a drop-in replacement manner, our method achieves superior morphing results for both images and videos across various benchmarks, including CLIP-inversion.</p>\",\"PeriodicalId\":13752,\"journal\":{\"name\":\"International Journal of Computer Vision\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2024-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Vision\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11263-024-02308-z\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-024-02308-z","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

大规模语言视觉预训练模型,如CLIP,利用几个无条件生成模型在文本引导图像变形方面取得了显着的效果。然而,现有的clip引导方法在将生成器从源域调整到目标域时,在实现逼真变形方面面临挑战。具体来说,目前的制导方法不能提供图像内变形区域的详细解释,导致误导和灾难性地忘记原始图像的保真度。在本文中,我们提出了一种考虑适当正则化损失的新方法,通过解决CLIP制导中的SP困境来克服这些困难。我们的方法由两个关键组成部分组成:(1)在CLIP空间的投影子空间中最小化模态间特征(即图像和文本)的测地余弦相似性损失,以及(2)最小化图像流形上的模态内特征(即图像和图像)的潜在正则化损失。通过以插入式替换的方式替换原始的定向CLIP损失,我们的方法在各种基准测试中(包括CLIP反转)对图像和视频都获得了出色的变形结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On Mitigating Stability-Plasticity Dilemma in CLIP-guided Image Morphing via Geodesic Distillation Loss

Large-scale language-vision pre-training models, such as CLIP, have achieved remarkable results in text-guided image morphing by leveraging several unconditional generative models. However, existing CLIP-guided methods face challenges in achieving photorealistic morphing when adapting the generator from the source to the target domain. Specifically, current guidance methods fail to provide detailed explanations of the morphing regions within the image, leading to misguidance and catastrophic forgetting of the original image’s fidelity. In this paper, we propose a novel approach considering proper regularization losses to overcome these difficulties by addressing the SP dilemma in CLIP guidance. Our approach consists of two key components: (1) a geodesic cosine similarity loss that minimizes inter-modality features (i.e., image and text) in a projected subspace of CLIP space, and (2) a latent regularization loss that minimizes intra-modality features (i.e., image and image) on the image manifold. By replacing the naive directional CLIP loss in a drop-in replacement manner, our method achieves superior morphing results for both images and videos across various benchmarks, including CLIP-inversion.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Computer Vision
International Journal of Computer Vision 工程技术-计算机:人工智能
CiteScore
29.80
自引率
2.10%
发文量
163
审稿时长
6 months
期刊介绍: The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs. Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision. Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community. Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas. In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives. The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research. Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.
期刊最新文献
Sample-Cohesive Pose-Aware Contrastive Facial Representation Learning Learning with Enriched Inductive Biases for Vision-Language Models Image Synthesis Under Limited Data: A Survey and Taxonomy Dual-Space Video Person Re-identification SeaFormer++: Squeeze-Enhanced Axial Transformer for Mobile Visual Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1