自动纤维结构计算在explore - nih

IF 4.4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Structure Pub Date : 2024-12-10 DOI:10.1016/j.str.2024.11.011
Alexander M. Barclay, Moses H. Milchberg, Owen A. Warmuth, Marcus D. Tuttle, Christopher J. Dennis, Charles D. Schwieters, Chad M. Rienstra
{"title":"自动纤维结构计算在explore - nih","authors":"Alexander M. Barclay, Moses H. Milchberg, Owen A. Warmuth, Marcus D. Tuttle, Christopher J. Dennis, Charles D. Schwieters, Chad M. Rienstra","doi":"10.1016/j.str.2024.11.011","DOIUrl":null,"url":null,"abstract":"Amyloid fibrils are protein assemblies that are pathologically linked to neurodegenerative diseases. Fibril structures can aid development of highly specific ligands for diagnostic imaging and therapeutics. Solid-state NMR (SSNMR) is a viable approach to solving fibril structures; however, most SSNMR protocols require manual analysis of extensive spectral data, presenting a major bottleneck to determining structures. Standard automation; routines fall short for symmetric multimeric assemblies like amyloids due to high cross peak degeneracy and the need to account for multiple protein subunits. Here, we employ the probabilistic assignment for structure determination protocol in conjunction with strict; symmetry in Xplor-NIH structure determination software, demonstrating the methodology using data from a previous structure of an α-synuclein (Asyn) fibril implicated in Parkinson disease. The automated protocol generated a structure of comparable, if not superior, quality in a few days of computational time, reducing the manual effort required; to solve amyloid structures by SSNMR.","PeriodicalId":22168,"journal":{"name":"Structure","volume":"20 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated fibril structure calculations in Xplor-NIH\",\"authors\":\"Alexander M. Barclay, Moses H. Milchberg, Owen A. Warmuth, Marcus D. Tuttle, Christopher J. Dennis, Charles D. Schwieters, Chad M. Rienstra\",\"doi\":\"10.1016/j.str.2024.11.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Amyloid fibrils are protein assemblies that are pathologically linked to neurodegenerative diseases. Fibril structures can aid development of highly specific ligands for diagnostic imaging and therapeutics. Solid-state NMR (SSNMR) is a viable approach to solving fibril structures; however, most SSNMR protocols require manual analysis of extensive spectral data, presenting a major bottleneck to determining structures. Standard automation; routines fall short for symmetric multimeric assemblies like amyloids due to high cross peak degeneracy and the need to account for multiple protein subunits. Here, we employ the probabilistic assignment for structure determination protocol in conjunction with strict; symmetry in Xplor-NIH structure determination software, demonstrating the methodology using data from a previous structure of an α-synuclein (Asyn) fibril implicated in Parkinson disease. The automated protocol generated a structure of comparable, if not superior, quality in a few days of computational time, reducing the manual effort required; to solve amyloid structures by SSNMR.\",\"PeriodicalId\":22168,\"journal\":{\"name\":\"Structure\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structure\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.str.2024.11.011\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structure","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.str.2024.11.011","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

淀粉样原纤维是与神经退行性疾病病理相关的蛋白质组合。纤维结构可以帮助发展高度特异性的配体诊断成像和治疗。固态核磁共振(SSNMR)是一种可行的方法来解决纤维结构;然而,大多数SSNMR协议需要人工分析大量的频谱数据,这是确定结构的主要瓶颈。标准自动化;由于高交叉峰退化和需要考虑多个蛋白质亚基,常规程序不适合像淀粉样蛋白这样的对称多聚体组装。在这里,我们将概率分配与严格的结构确定协议相结合;在Xplor-NIH结构测定软件中的对称性,展示了使用先前与帕金森病相关的α-突触核蛋白(Asyn)原纤维结构数据的方法。自动化协议在几天的计算时间内生成了一个质量相当(如果不是更好)的结构,减少了所需的人工工作量;通过SSNMR来解决淀粉样蛋白结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automated fibril structure calculations in Xplor-NIH
Amyloid fibrils are protein assemblies that are pathologically linked to neurodegenerative diseases. Fibril structures can aid development of highly specific ligands for diagnostic imaging and therapeutics. Solid-state NMR (SSNMR) is a viable approach to solving fibril structures; however, most SSNMR protocols require manual analysis of extensive spectral data, presenting a major bottleneck to determining structures. Standard automation; routines fall short for symmetric multimeric assemblies like amyloids due to high cross peak degeneracy and the need to account for multiple protein subunits. Here, we employ the probabilistic assignment for structure determination protocol in conjunction with strict; symmetry in Xplor-NIH structure determination software, demonstrating the methodology using data from a previous structure of an α-synuclein (Asyn) fibril implicated in Parkinson disease. The automated protocol generated a structure of comparable, if not superior, quality in a few days of computational time, reducing the manual effort required; to solve amyloid structures by SSNMR.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Structure
Structure 生物-生化与分子生物学
CiteScore
8.90
自引率
1.80%
发文量
155
审稿时长
3-8 weeks
期刊介绍: Structure aims to publish papers of exceptional interest in the field of structural biology. The journal strives to be essential reading for structural biologists, as well as biologists and biochemists that are interested in macromolecular structure and function. Structure strongly encourages the submission of manuscripts that present structural and molecular insights into biological function and mechanism. Other reports that address fundamental questions in structural biology, such as structure-based examinations of protein evolution, folding, and/or design, will also be considered. We will consider the application of any method, experimental or computational, at high or low resolution, to conduct structural investigations, as long as the method is appropriate for the biological, functional, and mechanistic question(s) being addressed. Likewise, reports describing single-molecule analysis of biological mechanisms are welcome. In general, the editors encourage submission of experimental structural studies that are enriched by an analysis of structure-activity relationships and will not consider studies that solely report structural information unless the structure or analysis is of exceptional and broad interest. Studies reporting only homology models, de novo models, or molecular dynamics simulations are also discouraged unless the models are informed by or validated by novel experimental data; rationalization of a large body of existing experimental evidence and making testable predictions based on a model or simulation is often not considered sufficient.
期刊最新文献
The ABC transporter MsbA in a dozen environments HuR prevents amyloid beta-induced phase separation of miRNA-bound Ago2 to RNA-processing bodies Fine-tuned structural modifications enable specific drug design against multidrug-resistant pathogens The structure of the R2T complex reveals a different architecture from the related HSP90 cochaperone R2TP Structural basis for the RNA binding properties of mouse IGF2BP3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1