减轻寒冷地区运河冻害的新型双层复合土工膜衬里结构:模型试验和数值模拟

IF 4.7 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL Geotextiles and Geomembranes Pub Date : 2024-12-04 DOI:10.1016/j.geotexmem.2024.11.013
Haoyuan Jiang , Mingyi Zhang , Zhengzhong Wang , Yi Wang , Zhengyi Wang , Xinjian Sun
{"title":"减轻寒冷地区运河冻害的新型双层复合土工膜衬里结构:模型试验和数值模拟","authors":"Haoyuan Jiang ,&nbsp;Mingyi Zhang ,&nbsp;Zhengzhong Wang ,&nbsp;Yi Wang ,&nbsp;Zhengyi Wang ,&nbsp;Xinjian Sun","doi":"10.1016/j.geotexmem.2024.11.013","DOIUrl":null,"url":null,"abstract":"<div><div>The canal is crucial for water diversion projects, but it is susceptible to frost damage. To address this, a two-layer composite geomembrane lining structure (TLCGLS) was proposed that regulates the interaction between canal lining and frozen soil. Model tests were conducted to investigate its anti-frost heave effectiveness. Considering the interaction among the lining, two-layer composite geomembranes (TLCGs), and frozen soil, a canal frost heave model with heat-water-mechanical coupling was developed. The influence of canal cross-section shapes and TLCGs arrangements on anti-frost heave performance and mechanism of TLCGLS were discussed. Results show that TLCGLS reduces uneven frost heave degree and compressive/tensile strains of the lining by 35%, 29%, and 28% respectively. During melting, it rapidly reduces frost heave, tangential deformation, and strain with minimal residual effects. TLCGLS demonstrates strong resetting ability and excellent anti-frost heave performance. It is particular suitable for arc-bottomed trapezoidal canals. However, excessive reduction in friction between TLCGs weakens arching effect of the bottom lining, increasing tensile stress and safety risks. TLCGLS with geomembrane-geotextile contact exhibits superior anti-frost heave performance, mitigating compressive stress by over 50% while meeting design requirements for tensile stress. These findings provide a theoretical basis and technical solution for mitigating frost damage in canals.</div></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"53 2","pages":"Pages 510-527"},"PeriodicalIF":4.7000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel two-layer composite geomembrane lining structure to mitigate frost damage in cold-region canals: Model test and numerical simulation\",\"authors\":\"Haoyuan Jiang ,&nbsp;Mingyi Zhang ,&nbsp;Zhengzhong Wang ,&nbsp;Yi Wang ,&nbsp;Zhengyi Wang ,&nbsp;Xinjian Sun\",\"doi\":\"10.1016/j.geotexmem.2024.11.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The canal is crucial for water diversion projects, but it is susceptible to frost damage. To address this, a two-layer composite geomembrane lining structure (TLCGLS) was proposed that regulates the interaction between canal lining and frozen soil. Model tests were conducted to investigate its anti-frost heave effectiveness. Considering the interaction among the lining, two-layer composite geomembranes (TLCGs), and frozen soil, a canal frost heave model with heat-water-mechanical coupling was developed. The influence of canal cross-section shapes and TLCGs arrangements on anti-frost heave performance and mechanism of TLCGLS were discussed. Results show that TLCGLS reduces uneven frost heave degree and compressive/tensile strains of the lining by 35%, 29%, and 28% respectively. During melting, it rapidly reduces frost heave, tangential deformation, and strain with minimal residual effects. TLCGLS demonstrates strong resetting ability and excellent anti-frost heave performance. It is particular suitable for arc-bottomed trapezoidal canals. However, excessive reduction in friction between TLCGs weakens arching effect of the bottom lining, increasing tensile stress and safety risks. TLCGLS with geomembrane-geotextile contact exhibits superior anti-frost heave performance, mitigating compressive stress by over 50% while meeting design requirements for tensile stress. These findings provide a theoretical basis and technical solution for mitigating frost damage in canals.</div></div>\",\"PeriodicalId\":55096,\"journal\":{\"name\":\"Geotextiles and Geomembranes\",\"volume\":\"53 2\",\"pages\":\"Pages 510-527\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geotextiles and Geomembranes\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0266114424001389\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geotextiles and Geomembranes","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266114424001389","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

这条运河对引水工程至关重要,但它容易受到霜冻的损害。为了解决这一问题,提出了一种双层复合土工膜衬砌结构(TLCGLS)来调节管道衬砌与冻土的相互作用。通过模型试验研究了其抗冻胀效果。考虑衬砌、双层复合土工膜(TLCGs)与冻土之间的相互作用,建立了考虑热-水-力耦合的运河冻胀模型。讨论了运河断面形状和TLCGs布置对TLCGs抗冻胀性能的影响,并探讨了TLCGs抗冻胀机理。结果表明:TLCGLS可使衬砌的不均匀冻胀程度和压拉应变分别降低35%、29%和28%;在融化过程中,它迅速减少霜胀,切向变形和应变与最小的残余影响。TLCGLS具有较强的复位能力和良好的抗冻胀性能。特别适用于弧形底梯形管。然而,tlcg之间的摩擦过大,会减弱衬底的拱效应,增加拉应力和安全风险。具有土工膜-土工织物接触的TLCGLS具有优异的抗冻胀性能,在满足设计拉应力要求的同时,可减轻50%以上的压应力。研究结果为减轻水渠冻损提供了理论依据和技术解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel two-layer composite geomembrane lining structure to mitigate frost damage in cold-region canals: Model test and numerical simulation
The canal is crucial for water diversion projects, but it is susceptible to frost damage. To address this, a two-layer composite geomembrane lining structure (TLCGLS) was proposed that regulates the interaction between canal lining and frozen soil. Model tests were conducted to investigate its anti-frost heave effectiveness. Considering the interaction among the lining, two-layer composite geomembranes (TLCGs), and frozen soil, a canal frost heave model with heat-water-mechanical coupling was developed. The influence of canal cross-section shapes and TLCGs arrangements on anti-frost heave performance and mechanism of TLCGLS were discussed. Results show that TLCGLS reduces uneven frost heave degree and compressive/tensile strains of the lining by 35%, 29%, and 28% respectively. During melting, it rapidly reduces frost heave, tangential deformation, and strain with minimal residual effects. TLCGLS demonstrates strong resetting ability and excellent anti-frost heave performance. It is particular suitable for arc-bottomed trapezoidal canals. However, excessive reduction in friction between TLCGs weakens arching effect of the bottom lining, increasing tensile stress and safety risks. TLCGLS with geomembrane-geotextile contact exhibits superior anti-frost heave performance, mitigating compressive stress by over 50% while meeting design requirements for tensile stress. These findings provide a theoretical basis and technical solution for mitigating frost damage in canals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geotextiles and Geomembranes
Geotextiles and Geomembranes 地学-地球科学综合
CiteScore
9.50
自引率
21.20%
发文量
111
审稿时长
59 days
期刊介绍: The range of products and their applications has expanded rapidly over the last decade with geotextiles and geomembranes being specified world wide. This rapid growth is paralleled by a virtual explosion of technology. Current reference books and even manufacturers' sponsored publications tend to date very quickly and the need for a vehicle to bring together and discuss the growing body of technology now available has become evident. Geotextiles and Geomembranes fills this need and provides a forum for the dissemination of information amongst research workers, designers, users and manufacturers. By providing a growing fund of information the journal increases general awareness, prompts further research and assists in the establishment of international codes and regulations.
期刊最新文献
Use of soilbags to protect flexible pipes against repeated load effects Editorial Board Deformation and load transfer of pile-supported foundation reinforced with soilbags raft cushion Evaluation of two-layered soils reinforced with 3D printed geogrid models under axisymmetric loading conditions Numerical investigation of ground reinforced embankments: Structural geometry design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1