一种新的和积结构的近似2位加法器用于并行忆阻器计算

IF 2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Journal on Exploratory Solid-State Computational Devices and Circuits Pub Date : 2024-11-13 DOI:10.1109/JXCDC.2024.3497720
Christian Simonides;Dominik Gausepohl;Peter M. Hinkel;Fabian Seiler;Nima Taherinejad
{"title":"一种新的和积结构的近似2位加法器用于并行忆阻器计算","authors":"Christian Simonides;Dominik Gausepohl;Peter M. Hinkel;Fabian Seiler;Nima Taherinejad","doi":"10.1109/JXCDC.2024.3497720","DOIUrl":null,"url":null,"abstract":"Conventional computing methods struggle with the exponentially increasing demand for computational power, caused by applications including image processing and machine learning (ML). Novel computing paradigms such as in-memory computing (IMC) and approximate computing (AxC) provide promising solutions to this problem. Due to their low energy consumption and inherent ability to store data in a nonvolatile fashion, memristors are an increasingly popular choice in these fields. There is a wide range of logic forms compatible with memristive IMC, each offering different advantages. We present a novel mixed-logic solution that utilizes properties of the sum-of-product (SOP) representation and propose a full-adder circuit that works efficiently in 2-bit units. To further improve the speed, area usage, and energy consumption, we propose two additional approximate (Ax) 2-bit adders that exhibit inherent parallelization capabilities. We apply the proposed adders in selected image processing applications, where our Ax approach reduces the energy consumption by \n<inline-formula> <tex-math>$\\mathrm {31~\\!\\%}$ </tex-math></inline-formula>\n–\n<inline-formula> <tex-math>$\\mathrm {40~\\!\\%}$ </tex-math></inline-formula>\n and improves the speed by \n<inline-formula> <tex-math>$\\mathrm {50~\\!\\%}$ </tex-math></inline-formula>\n. To demonstrate the potential gains of our approximations in more complex applications, we applied them in ML. Our experiments indicate that with up to \n<inline-formula> <tex-math>$6/16$ </tex-math></inline-formula>\n Ax adders, there is no accuracy degradation when applied in a convolutional neural network (CNN) that is evaluated on MNIST. Our approach can save up to 125.6 mJ of energy and 505 million steps compared to our exact approach.","PeriodicalId":54149,"journal":{"name":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","volume":"10 ","pages":"135-143"},"PeriodicalIF":2.0000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10752571","citationCount":"0","resultStr":"{\"title\":\"Approximated 2-Bit Adders for Parallel In-Memristor Computing With a Novel Sum-of-Product Architecture\",\"authors\":\"Christian Simonides;Dominik Gausepohl;Peter M. Hinkel;Fabian Seiler;Nima Taherinejad\",\"doi\":\"10.1109/JXCDC.2024.3497720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conventional computing methods struggle with the exponentially increasing demand for computational power, caused by applications including image processing and machine learning (ML). Novel computing paradigms such as in-memory computing (IMC) and approximate computing (AxC) provide promising solutions to this problem. Due to their low energy consumption and inherent ability to store data in a nonvolatile fashion, memristors are an increasingly popular choice in these fields. There is a wide range of logic forms compatible with memristive IMC, each offering different advantages. We present a novel mixed-logic solution that utilizes properties of the sum-of-product (SOP) representation and propose a full-adder circuit that works efficiently in 2-bit units. To further improve the speed, area usage, and energy consumption, we propose two additional approximate (Ax) 2-bit adders that exhibit inherent parallelization capabilities. We apply the proposed adders in selected image processing applications, where our Ax approach reduces the energy consumption by \\n<inline-formula> <tex-math>$\\\\mathrm {31~\\\\!\\\\%}$ </tex-math></inline-formula>\\n–\\n<inline-formula> <tex-math>$\\\\mathrm {40~\\\\!\\\\%}$ </tex-math></inline-formula>\\n and improves the speed by \\n<inline-formula> <tex-math>$\\\\mathrm {50~\\\\!\\\\%}$ </tex-math></inline-formula>\\n. To demonstrate the potential gains of our approximations in more complex applications, we applied them in ML. Our experiments indicate that with up to \\n<inline-formula> <tex-math>$6/16$ </tex-math></inline-formula>\\n Ax adders, there is no accuracy degradation when applied in a convolutional neural network (CNN) that is evaluated on MNIST. Our approach can save up to 125.6 mJ of energy and 505 million steps compared to our exact approach.\",\"PeriodicalId\":54149,\"journal\":{\"name\":\"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits\",\"volume\":\"10 \",\"pages\":\"135-143\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10752571\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10752571/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10752571/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

由于图像处理和机器学习(ML)等应用的出现,传统的计算方法难以应对以指数级增长的计算能力需求。新的计算范式,如内存计算(IMC)和近似计算(AxC),为这一问题提供了有希望的解决方案。由于其低能耗和以非易失性方式存储数据的固有能力,记忆电阻器在这些领域越来越受欢迎。记忆式IMC有多种逻辑形式,每种形式都有不同的优点。我们提出了一种新的混合逻辑解决方案,利用乘积和(SOP)表示的特性,并提出了一个在2位单元中有效工作的全加法器电路。为了进一步提高速度、面积使用和能耗,我们提出了两个额外的近似(Ax) 2位加法器,它们具有固有的并行化能力。我们将提出的加法器应用于选定的图像处理应用中,其中我们的Ax方法减少了能耗$\ mathm {31~\!\%}$ - $\ mathm {40~\!\%}$并提高$\ mathm {50~\!\ %} $。为了证明我们的近似在更复杂的应用中的潜在收益,我们将它们应用于ML中。我们的实验表明,使用高达$6/16$ Ax加法器,当应用于在MNIST上评估的卷积神经网络(CNN)时,没有精度下降。与我们的方法相比,我们的方法可以节省多达125.6兆焦耳的能量和5.05亿步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Approximated 2-Bit Adders for Parallel In-Memristor Computing With a Novel Sum-of-Product Architecture
Conventional computing methods struggle with the exponentially increasing demand for computational power, caused by applications including image processing and machine learning (ML). Novel computing paradigms such as in-memory computing (IMC) and approximate computing (AxC) provide promising solutions to this problem. Due to their low energy consumption and inherent ability to store data in a nonvolatile fashion, memristors are an increasingly popular choice in these fields. There is a wide range of logic forms compatible with memristive IMC, each offering different advantages. We present a novel mixed-logic solution that utilizes properties of the sum-of-product (SOP) representation and propose a full-adder circuit that works efficiently in 2-bit units. To further improve the speed, area usage, and energy consumption, we propose two additional approximate (Ax) 2-bit adders that exhibit inherent parallelization capabilities. We apply the proposed adders in selected image processing applications, where our Ax approach reduces the energy consumption by $\mathrm {31~\!\%}$ $\mathrm {40~\!\%}$ and improves the speed by $\mathrm {50~\!\%}$ . To demonstrate the potential gains of our approximations in more complex applications, we applied them in ML. Our experiments indicate that with up to $6/16$ Ax adders, there is no accuracy degradation when applied in a convolutional neural network (CNN) that is evaluated on MNIST. Our approach can save up to 125.6 mJ of energy and 505 million steps compared to our exact approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
4.20%
发文量
11
审稿时长
13 weeks
期刊最新文献
2024 Index IEEE Journal on Exploratory Solid-State Computational Devices and Circuits Vol. 10 Front Cover Table of Contents INFORMATION FOR AUTHORS IEEE Journal on Exploratory Solid-State Computational Devices and Circuits publication information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1