{"title":"基于多内通道光子晶体光纤的表面等离子体共振传感器同时检测ague级","authors":"Ahmet Yasli, Huseyin Ademgil","doi":"10.1007/s10825-024-02260-8","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, a novel multi-inner analyte channel photonic crystal fiber (PCF) based surface plasmon resonance (SPR) sensor is proposed to analyse plasmodium falciparum parasitized human Red Blood Cells (RBCs) that leads to ague. The full vectorial finite element method (FV-FEM) is employed to investigate the key propagation characteristics of the proposed sensor, such as confinement losses, resonance conditions, sensitivities, resolutions, and their linearities. Metallic plasmonic layers of gold (Au) and silver (Ag) are utilised, with two distinct channel shapes being used (circular and square). There are two alternative scenarios reported to identify the phases of the plasmodium falciparum cycle (Ring, Trophozite, and Schizont) in RBCs. The maximum spectrum sensitivities for circular type analyte channels have been found to be 4500 nm/RIU and 4750 nm/RIU, with resolutions of <span>\\(2.2 \\times 10^{-5}\\)</span> RIU and <span>\\(2.1 \\times 10^{-5}\\)</span> RIU for y-polarized and x-polarized modes, respectively. The spectral sensitivities of the square-shaped analyte channel, on the other hand, are 5300 nm/RIU and 6250 nm/RIU, with resolutions of <span>\\(2 \\times 10^{-5}\\)</span> RIU and <span>\\(1.6 \\times 10^{-5}\\)</span> RIU for y-polarized and x-polarized modes, respectively.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"24 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simultaneous detection of ague stages by using a multi-inner channel photonic crystal fiber based surface plasmon resonance sensor\",\"authors\":\"Ahmet Yasli, Huseyin Ademgil\",\"doi\":\"10.1007/s10825-024-02260-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, a novel multi-inner analyte channel photonic crystal fiber (PCF) based surface plasmon resonance (SPR) sensor is proposed to analyse plasmodium falciparum parasitized human Red Blood Cells (RBCs) that leads to ague. The full vectorial finite element method (FV-FEM) is employed to investigate the key propagation characteristics of the proposed sensor, such as confinement losses, resonance conditions, sensitivities, resolutions, and their linearities. Metallic plasmonic layers of gold (Au) and silver (Ag) are utilised, with two distinct channel shapes being used (circular and square). There are two alternative scenarios reported to identify the phases of the plasmodium falciparum cycle (Ring, Trophozite, and Schizont) in RBCs. The maximum spectrum sensitivities for circular type analyte channels have been found to be 4500 nm/RIU and 4750 nm/RIU, with resolutions of <span>\\\\(2.2 \\\\times 10^{-5}\\\\)</span> RIU and <span>\\\\(2.1 \\\\times 10^{-5}\\\\)</span> RIU for y-polarized and x-polarized modes, respectively. The spectral sensitivities of the square-shaped analyte channel, on the other hand, are 5300 nm/RIU and 6250 nm/RIU, with resolutions of <span>\\\\(2 \\\\times 10^{-5}\\\\)</span> RIU and <span>\\\\(1.6 \\\\times 10^{-5}\\\\)</span> RIU for y-polarized and x-polarized modes, respectively.</p></div>\",\"PeriodicalId\":620,\"journal\":{\"name\":\"Journal of Computational Electronics\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10825-024-02260-8\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10825-024-02260-8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Simultaneous detection of ague stages by using a multi-inner channel photonic crystal fiber based surface plasmon resonance sensor
In this paper, a novel multi-inner analyte channel photonic crystal fiber (PCF) based surface plasmon resonance (SPR) sensor is proposed to analyse plasmodium falciparum parasitized human Red Blood Cells (RBCs) that leads to ague. The full vectorial finite element method (FV-FEM) is employed to investigate the key propagation characteristics of the proposed sensor, such as confinement losses, resonance conditions, sensitivities, resolutions, and their linearities. Metallic plasmonic layers of gold (Au) and silver (Ag) are utilised, with two distinct channel shapes being used (circular and square). There are two alternative scenarios reported to identify the phases of the plasmodium falciparum cycle (Ring, Trophozite, and Schizont) in RBCs. The maximum spectrum sensitivities for circular type analyte channels have been found to be 4500 nm/RIU and 4750 nm/RIU, with resolutions of \(2.2 \times 10^{-5}\) RIU and \(2.1 \times 10^{-5}\) RIU for y-polarized and x-polarized modes, respectively. The spectral sensitivities of the square-shaped analyte channel, on the other hand, are 5300 nm/RIU and 6250 nm/RIU, with resolutions of \(2 \times 10^{-5}\) RIU and \(1.6 \times 10^{-5}\) RIU for y-polarized and x-polarized modes, respectively.
期刊介绍:
he Journal of Computational Electronics brings together research on all aspects of modeling and simulation of modern electronics. This includes optical, electronic, mechanical, and quantum mechanical aspects, as well as research on the underlying mathematical algorithms and computational details. The related areas of energy conversion/storage and of molecular and biological systems, in which the thrust is on the charge transport, electronic, mechanical, and optical properties, are also covered.
In particular, we encourage manuscripts dealing with device simulation; with optical and optoelectronic systems and photonics; with energy storage (e.g. batteries, fuel cells) and harvesting (e.g. photovoltaic), with simulation of circuits, VLSI layout, logic and architecture (based on, for example, CMOS devices, quantum-cellular automata, QBITs, or single-electron transistors); with electromagnetic simulations (such as microwave electronics and components); or with molecular and biological systems. However, in all these cases, the submitted manuscripts should explicitly address the electronic properties of the relevant systems, materials, or devices and/or present novel contributions to the physical models, computational strategies, or numerical algorithms.