在空间发展的边界层中分离壁曲率效应的系统DNS方法

IF 2.2 3区 工程技术 Q2 MECHANICS Theoretical and Computational Fluid Dynamics Pub Date : 2024-12-09 DOI:10.1007/s00162-024-00729-7
Jason Appelbaum, Markus Kloker, Christoph Wenzel
{"title":"在空间发展的边界层中分离壁曲率效应的系统DNS方法","authors":"Jason Appelbaum,&nbsp;Markus Kloker,&nbsp;Christoph Wenzel","doi":"10.1007/s00162-024-00729-7","DOIUrl":null,"url":null,"abstract":"<div><p>A methodology to numerically assess wall-curvature effects in boundary layers is introduced. Wall curvature, which directly induces streamline curvature, is associated with several changes in boundary-layer flow. By necessity, a local radial pressure gradient emerges to balance mean flow turning. Moreover, a streamwise (wall-tangential) pressure gradient can appear for configurations with non-constant wall curvature or a particular freestream condition; zero pressure gradient is a special case. In laminar concave flow, the Görtler instability and the associated Taylor-Görtler vortices destabilize the flow and promote laminar-turbulent transition, whereas in the fully turbulent regime, unsteady coherent structures formed by the centrifugal instability mechanism dramatically redistribute turbulent shear stress. One difficulty of assessing centrifugal effects on boundary layers is that they often appear simultaneously with other phenomena, such as a streamwise pressure gradient, making their individual evaluation often ambiguous. For numerical studies of transitional and turbulent boundary layers, it is therefore beneficial to understand the interactive nature of such coupled effects for generic configurations. A methodology to do so is presented, and is verified using the case of a subsonic, compressible turbulent boundary layer. Four direct numerical simulations have been computed, forming a <span>\\(2{\\times }2\\)</span> matrix of turbulent boundary-layer states; namely with and without concave wall curvature, each having a zero and a non-zero streamwise-pressure-gradient realization. The setup and accompanying procedures to determine appropriate boundary conditions are discussed, and the methodology is evaluated through analysis of the mean flow fields. Differences in mean flow properties such as wall shear stress and boundary-layer thickness due to either streamwise pressure gradient or wall curvature are shown to be remarkably independent of one another.\n</p></div>","PeriodicalId":795,"journal":{"name":"Theoretical and Computational Fluid Dynamics","volume":"39 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00162-024-00729-7.pdf","citationCount":"0","resultStr":"{\"title\":\"A systematic DNS approach to isolate wall-curvature effects in spatially developing boundary layers\",\"authors\":\"Jason Appelbaum,&nbsp;Markus Kloker,&nbsp;Christoph Wenzel\",\"doi\":\"10.1007/s00162-024-00729-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A methodology to numerically assess wall-curvature effects in boundary layers is introduced. Wall curvature, which directly induces streamline curvature, is associated with several changes in boundary-layer flow. By necessity, a local radial pressure gradient emerges to balance mean flow turning. Moreover, a streamwise (wall-tangential) pressure gradient can appear for configurations with non-constant wall curvature or a particular freestream condition; zero pressure gradient is a special case. In laminar concave flow, the Görtler instability and the associated Taylor-Görtler vortices destabilize the flow and promote laminar-turbulent transition, whereas in the fully turbulent regime, unsteady coherent structures formed by the centrifugal instability mechanism dramatically redistribute turbulent shear stress. One difficulty of assessing centrifugal effects on boundary layers is that they often appear simultaneously with other phenomena, such as a streamwise pressure gradient, making their individual evaluation often ambiguous. For numerical studies of transitional and turbulent boundary layers, it is therefore beneficial to understand the interactive nature of such coupled effects for generic configurations. A methodology to do so is presented, and is verified using the case of a subsonic, compressible turbulent boundary layer. Four direct numerical simulations have been computed, forming a <span>\\\\(2{\\\\times }2\\\\)</span> matrix of turbulent boundary-layer states; namely with and without concave wall curvature, each having a zero and a non-zero streamwise-pressure-gradient realization. The setup and accompanying procedures to determine appropriate boundary conditions are discussed, and the methodology is evaluated through analysis of the mean flow fields. Differences in mean flow properties such as wall shear stress and boundary-layer thickness due to either streamwise pressure gradient or wall curvature are shown to be remarkably independent of one another.\\n</p></div>\",\"PeriodicalId\":795,\"journal\":{\"name\":\"Theoretical and Computational Fluid Dynamics\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00162-024-00729-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Computational Fluid Dynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00162-024-00729-7\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Computational Fluid Dynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00162-024-00729-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

介绍了一种计算边界层壁面曲率效应的方法。壁面曲率直接导致流线曲率,它与边界层流动的多种变化有关。必要时,局部径向压力梯度出现以平衡平均流量转向。此外,在非恒定壁面曲率或特定自由流条件下,可以出现流向(壁面切向)压力梯度;零压力梯度是一个特例。在层流凹流中,Görtler不稳定性和相关的Taylor-Görtler涡旋破坏了流动的稳定性,促进了层流-湍流的过渡,而在完全湍流状态下,离心不稳定性机制形成的非定常相干结构极大地重新分配了湍流剪应力。评估边界层上的离心效应的一个困难是,它们经常与其他现象同时出现,如沿流的压力梯度,使得它们的单独评估常常模糊不清。因此,对于过渡边界层和湍流边界层的数值研究,理解这种耦合效应对一般构型的相互作用性质是有益的。提出了这样做的方法,并使用亚音速可压缩湍流边界层的情况进行了验证。四次直接数值模拟计算,形成了一个\(2{\times }2\)湍流边界层状态矩阵;即有和没有凹壁曲率,各有一个零和一个非零的流向压力梯度实现。讨论了确定适当边界条件的设置和相关程序,并通过对平均流场的分析对该方法进行了评价。由于流向压力梯度或壁面曲率导致的壁面剪切应力和边界层厚度等平均流动特性的差异显示出明显的相互独立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A systematic DNS approach to isolate wall-curvature effects in spatially developing boundary layers

A methodology to numerically assess wall-curvature effects in boundary layers is introduced. Wall curvature, which directly induces streamline curvature, is associated with several changes in boundary-layer flow. By necessity, a local radial pressure gradient emerges to balance mean flow turning. Moreover, a streamwise (wall-tangential) pressure gradient can appear for configurations with non-constant wall curvature or a particular freestream condition; zero pressure gradient is a special case. In laminar concave flow, the Görtler instability and the associated Taylor-Görtler vortices destabilize the flow and promote laminar-turbulent transition, whereas in the fully turbulent regime, unsteady coherent structures formed by the centrifugal instability mechanism dramatically redistribute turbulent shear stress. One difficulty of assessing centrifugal effects on boundary layers is that they often appear simultaneously with other phenomena, such as a streamwise pressure gradient, making their individual evaluation often ambiguous. For numerical studies of transitional and turbulent boundary layers, it is therefore beneficial to understand the interactive nature of such coupled effects for generic configurations. A methodology to do so is presented, and is verified using the case of a subsonic, compressible turbulent boundary layer. Four direct numerical simulations have been computed, forming a \(2{\times }2\) matrix of turbulent boundary-layer states; namely with and without concave wall curvature, each having a zero and a non-zero streamwise-pressure-gradient realization. The setup and accompanying procedures to determine appropriate boundary conditions are discussed, and the methodology is evaluated through analysis of the mean flow fields. Differences in mean flow properties such as wall shear stress and boundary-layer thickness due to either streamwise pressure gradient or wall curvature are shown to be remarkably independent of one another.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
2.90%
发文量
38
审稿时长
>12 weeks
期刊介绍: Theoretical and Computational Fluid Dynamics provides a forum for the cross fertilization of ideas, tools and techniques across all disciplines in which fluid flow plays a role. The focus is on aspects of fluid dynamics where theory and computation are used to provide insights and data upon which solid physical understanding is revealed. We seek research papers, invited review articles, brief communications, letters and comments addressing flow phenomena of relevance to aeronautical, geophysical, environmental, material, mechanical and life sciences. Papers of a purely algorithmic, experimental or engineering application nature, and papers without significant new physical insights, are outside the scope of this journal. For computational work, authors are responsible for ensuring that any artifacts of discretization and/or implementation are sufficiently controlled such that the numerical results unambiguously support the conclusions drawn. Where appropriate, and to the extent possible, such papers should either include or reference supporting documentation in the form of verification and validation studies.
期刊最新文献
Experimentally informed, linear mean-field modelling of circular cylinder aeroacoustics Porous plates at incidence Performance investigations of the two-phase mixer for liquid metal magnetohydrodynamic generator Active learning of data-assimilation closures using graph neural networks Simple shape model for normal shock trains in straight channels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1