Kashifa Fazl-Ur-Rahman, Govindaswamy Shanker, Ganga Periyasamy
{"title":"DFT研究了堆叠对3,5-二[4-(4-甲基苯基羰基氧基)苯基]-1,2,4-恶二唑电子结构、吸收和非线性光学性质的影响","authors":"Kashifa Fazl-Ur-Rahman, Govindaswamy Shanker, Ganga Periyasamy","doi":"10.1007/s00894-024-06235-1","DOIUrl":null,"url":null,"abstract":"<div><h3>Context</h3><p>1,2,4-Oxadiazole serves as a fundamental building block driving advancements across diverse scientific and technological arenas, contributing to the creation of innovative materials for various applications including devices, sensors, medications, agrochemicals, and biomedical instruments. Employing density functional theory (DFT) methods, we investigate the impact of different conformers of an oxadiazole substituted derivative, specifically 3,5-bis[4-(4-methylphenylcarbonyloxy)phenyl]-1,2,4-oxadiazole, in both monomeric and stacked configurations (dimeric and tetrameric). We analyze the electronic structures of various conformers, including assessment of HOMO–LUMO energy gaps, to detect the influence of diverse substituents and stacking arrangements. We have also explored the stability of stacked structure in explicit solvent environment. Additionally, we examine absorption spectra, non-linear optical properties, and electronic circular dichroism to evaluate the potential applications of these molecules in optoelectronic devices. Our calculations showed that all the conformers were thermodynamically stable within an energy difference of 2.64 kcal mol<sup>−1</sup>. The study also suggests possible application of the material in optical and electronic devices.</p><h3>Methods</h3><p>DFT calculations were carried out using the CAM-B3LYP and wB97XD functionals with a 6–31 + G* all-electron basis set, paired with the SCRF/PCM solvation model, implemented in the Gaussian 09 package. Equilibrium structure was achieved by performing NPT and NVT simulations using the Gromacs package.</p></div>","PeriodicalId":651,"journal":{"name":"Journal of Molecular Modeling","volume":"31 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DFT investigations on the influence of stacking on the electronic structure, absorption, and non-linear optical properties of 3,5-bis[4-(4-methylphenylcarbonyloxy)phenyl]-1,2,4-oxadiazole\",\"authors\":\"Kashifa Fazl-Ur-Rahman, Govindaswamy Shanker, Ganga Periyasamy\",\"doi\":\"10.1007/s00894-024-06235-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Context</h3><p>1,2,4-Oxadiazole serves as a fundamental building block driving advancements across diverse scientific and technological arenas, contributing to the creation of innovative materials for various applications including devices, sensors, medications, agrochemicals, and biomedical instruments. Employing density functional theory (DFT) methods, we investigate the impact of different conformers of an oxadiazole substituted derivative, specifically 3,5-bis[4-(4-methylphenylcarbonyloxy)phenyl]-1,2,4-oxadiazole, in both monomeric and stacked configurations (dimeric and tetrameric). We analyze the electronic structures of various conformers, including assessment of HOMO–LUMO energy gaps, to detect the influence of diverse substituents and stacking arrangements. We have also explored the stability of stacked structure in explicit solvent environment. Additionally, we examine absorption spectra, non-linear optical properties, and electronic circular dichroism to evaluate the potential applications of these molecules in optoelectronic devices. Our calculations showed that all the conformers were thermodynamically stable within an energy difference of 2.64 kcal mol<sup>−1</sup>. The study also suggests possible application of the material in optical and electronic devices.</p><h3>Methods</h3><p>DFT calculations were carried out using the CAM-B3LYP and wB97XD functionals with a 6–31 + G* all-electron basis set, paired with the SCRF/PCM solvation model, implemented in the Gaussian 09 package. Equilibrium structure was achieved by performing NPT and NVT simulations using the Gromacs package.</p></div>\",\"PeriodicalId\":651,\"journal\":{\"name\":\"Journal of Molecular Modeling\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Modeling\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00894-024-06235-1\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Modeling","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00894-024-06235-1","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
DFT investigations on the influence of stacking on the electronic structure, absorption, and non-linear optical properties of 3,5-bis[4-(4-methylphenylcarbonyloxy)phenyl]-1,2,4-oxadiazole
Context
1,2,4-Oxadiazole serves as a fundamental building block driving advancements across diverse scientific and technological arenas, contributing to the creation of innovative materials for various applications including devices, sensors, medications, agrochemicals, and biomedical instruments. Employing density functional theory (DFT) methods, we investigate the impact of different conformers of an oxadiazole substituted derivative, specifically 3,5-bis[4-(4-methylphenylcarbonyloxy)phenyl]-1,2,4-oxadiazole, in both monomeric and stacked configurations (dimeric and tetrameric). We analyze the electronic structures of various conformers, including assessment of HOMO–LUMO energy gaps, to detect the influence of diverse substituents and stacking arrangements. We have also explored the stability of stacked structure in explicit solvent environment. Additionally, we examine absorption spectra, non-linear optical properties, and electronic circular dichroism to evaluate the potential applications of these molecules in optoelectronic devices. Our calculations showed that all the conformers were thermodynamically stable within an energy difference of 2.64 kcal mol−1. The study also suggests possible application of the material in optical and electronic devices.
Methods
DFT calculations were carried out using the CAM-B3LYP and wB97XD functionals with a 6–31 + G* all-electron basis set, paired with the SCRF/PCM solvation model, implemented in the Gaussian 09 package. Equilibrium structure was achieved by performing NPT and NVT simulations using the Gromacs package.
期刊介绍:
The Journal of Molecular Modeling focuses on "hardcore" modeling, publishing high-quality research and reports. Founded in 1995 as a purely electronic journal, it has adapted its format to include a full-color print edition, and adjusted its aims and scope fit the fast-changing field of molecular modeling, with a particular focus on three-dimensional modeling.
Today, the journal covers all aspects of molecular modeling including life science modeling; materials modeling; new methods; and computational chemistry.
Topics include computer-aided molecular design; rational drug design, de novo ligand design, receptor modeling and docking; cheminformatics, data analysis, visualization and mining; computational medicinal chemistry; homology modeling; simulation of peptides, DNA and other biopolymers; quantitative structure-activity relationships (QSAR) and ADME-modeling; modeling of biological reaction mechanisms; and combined experimental and computational studies in which calculations play a major role.