{"title":"使用基于智能手机的分析方法,简单、准确、精确地检测地表水中的总氮。","authors":"Fatih Polat","doi":"10.1007/s44211-024-00696-3","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, a simple, accurate, and precise analytical strategy was developed for the determination of total nitrogen (total dissolved nitrogen + particulate nitrogen) in surface waters using smartphone technology. The spectrophotometric method based on digestion with persulfate, commonly used in water analyses, was integrated with a digital image-based colorimetric detection system (DIC). To evaluate the accuracy of the total nitrogen-digital image-based colorimetric detection system (TN-DIC), results obtained from the Hach method and UV-VIS spectrophotometer were compared with the RGB values obtained from the smartphone imaging system. T-Test results indicated no statistically significant difference between the results obtained from the TN-DIC method and the standard methods. The linear range of the TN-DIC method was determined to be 0.25-5 mg/L. The analytical quality indicators of the system were established as follows: limit of detection (LOD) 0.095 ppm, limit of quantification (LOQ) 0.29 ppm, %RSD 0.32, and R<sup>2</sup> value 0.9982. Recovery percentages (99-112%) used to measure the analytical performance of the method were calculated through spike applications at concentrations of 1 and 2 ppm in real water samples. Unlike traditional spectrophotometric methods, this smartphone-based approach is fast, simple, and cost-effective, requiring no complex equipment during analysis.</p>","PeriodicalId":7802,"journal":{"name":"Analytical Sciences","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simple, accurate, and precise detection of total nitrogen in surface waters using a smartphone-based analytical method.\",\"authors\":\"Fatih Polat\",\"doi\":\"10.1007/s44211-024-00696-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, a simple, accurate, and precise analytical strategy was developed for the determination of total nitrogen (total dissolved nitrogen + particulate nitrogen) in surface waters using smartphone technology. The spectrophotometric method based on digestion with persulfate, commonly used in water analyses, was integrated with a digital image-based colorimetric detection system (DIC). To evaluate the accuracy of the total nitrogen-digital image-based colorimetric detection system (TN-DIC), results obtained from the Hach method and UV-VIS spectrophotometer were compared with the RGB values obtained from the smartphone imaging system. T-Test results indicated no statistically significant difference between the results obtained from the TN-DIC method and the standard methods. The linear range of the TN-DIC method was determined to be 0.25-5 mg/L. The analytical quality indicators of the system were established as follows: limit of detection (LOD) 0.095 ppm, limit of quantification (LOQ) 0.29 ppm, %RSD 0.32, and R<sup>2</sup> value 0.9982. Recovery percentages (99-112%) used to measure the analytical performance of the method were calculated through spike applications at concentrations of 1 and 2 ppm in real water samples. Unlike traditional spectrophotometric methods, this smartphone-based approach is fast, simple, and cost-effective, requiring no complex equipment during analysis.</p>\",\"PeriodicalId\":7802,\"journal\":{\"name\":\"Analytical Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Sciences\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s44211-024-00696-3\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Sciences","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s44211-024-00696-3","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Simple, accurate, and precise detection of total nitrogen in surface waters using a smartphone-based analytical method.
In this study, a simple, accurate, and precise analytical strategy was developed for the determination of total nitrogen (total dissolved nitrogen + particulate nitrogen) in surface waters using smartphone technology. The spectrophotometric method based on digestion with persulfate, commonly used in water analyses, was integrated with a digital image-based colorimetric detection system (DIC). To evaluate the accuracy of the total nitrogen-digital image-based colorimetric detection system (TN-DIC), results obtained from the Hach method and UV-VIS spectrophotometer were compared with the RGB values obtained from the smartphone imaging system. T-Test results indicated no statistically significant difference between the results obtained from the TN-DIC method and the standard methods. The linear range of the TN-DIC method was determined to be 0.25-5 mg/L. The analytical quality indicators of the system were established as follows: limit of detection (LOD) 0.095 ppm, limit of quantification (LOQ) 0.29 ppm, %RSD 0.32, and R2 value 0.9982. Recovery percentages (99-112%) used to measure the analytical performance of the method were calculated through spike applications at concentrations of 1 and 2 ppm in real water samples. Unlike traditional spectrophotometric methods, this smartphone-based approach is fast, simple, and cost-effective, requiring no complex equipment during analysis.
期刊介绍:
Analytical Sciences is an international journal published monthly by The Japan Society for Analytical Chemistry. The journal publishes papers on all aspects of the theory and practice of analytical sciences, including fundamental and applied, inorganic and organic, wet chemical and instrumental methods.
This publication is supported in part by the Grant-in-Aid for Publication of Scientific Research Result of the Japanese Ministry of Education, Culture, Sports, Science and Technology.