上流式毯式厌氧氨氧化(UBFA)系统处理低氮废水:高效脱氮、颗粒形成、N2O排放和微生物演替。

IF 3.5 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Bioprocess and Biosystems Engineering Pub Date : 2024-12-09 DOI:10.1007/s00449-024-03116-y
Chongyang Wang, Feng Gao, Sheng Gao, Zheng Nian, Xintong Han
{"title":"上流式毯式厌氧氨氧化(UBFA)系统处理低氮废水:高效脱氮、颗粒形成、N2O排放和微生物演替。","authors":"Chongyang Wang, Feng Gao, Sheng Gao, Zheng Nian, Xintong Han","doi":"10.1007/s00449-024-03116-y","DOIUrl":null,"url":null,"abstract":"<p><p>This research provides an important approach for low-nitrogen wastewater treatment through anaerobic ammonium oxidation (Anammox), and Anammox granule sludge (AnGS) in the Upflow. Blanket Filter Anammox (UBFA) system through shortening the hydraulic retention time was successfully cultivated. The percentage of medium granules (1.0-2.0 mm) with the highest Anammox activity increased from 0 to 28.5%, and the proportion of flocs (0-200 μm) reduced from 84.5% to 17.6%. Through the multidimensional analysis of AnGS, the relationship between AnGS and EPS secretion, low SVI, high PN/PS, multiple filamentous bacteria, and AnAOB were explored. Microelectrode tracing tests demonstrated that the main anammox reaction active layer was 0-1500 μm, and the highest activity was observed at 200-400 μm, whereas denitrification activity and N<sub>2</sub>O production were mainly distributed in the granules deep layer of 1500-2500 μm. The research showed that Candidatus Brocadia and Candidatus Kuenenia were the predominant anammox species in the UBFA system, while the abundance of AnAOB was higher in medium granules.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Upflow blanket filter anammox (UBFA) system treating low-nitrogen wastewater: high-efficient nitrogen removal, granules formation, N<sub>2</sub>O emission, and microbial succession.\",\"authors\":\"Chongyang Wang, Feng Gao, Sheng Gao, Zheng Nian, Xintong Han\",\"doi\":\"10.1007/s00449-024-03116-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This research provides an important approach for low-nitrogen wastewater treatment through anaerobic ammonium oxidation (Anammox), and Anammox granule sludge (AnGS) in the Upflow. Blanket Filter Anammox (UBFA) system through shortening the hydraulic retention time was successfully cultivated. The percentage of medium granules (1.0-2.0 mm) with the highest Anammox activity increased from 0 to 28.5%, and the proportion of flocs (0-200 μm) reduced from 84.5% to 17.6%. Through the multidimensional analysis of AnGS, the relationship between AnGS and EPS secretion, low SVI, high PN/PS, multiple filamentous bacteria, and AnAOB were explored. Microelectrode tracing tests demonstrated that the main anammox reaction active layer was 0-1500 μm, and the highest activity was observed at 200-400 μm, whereas denitrification activity and N<sub>2</sub>O production were mainly distributed in the granules deep layer of 1500-2500 μm. The research showed that Candidatus Brocadia and Candidatus Kuenenia were the predominant anammox species in the UBFA system, while the abundance of AnAOB was higher in medium granules.</p>\",\"PeriodicalId\":9024,\"journal\":{\"name\":\"Bioprocess and Biosystems Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioprocess and Biosystems Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00449-024-03116-y\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprocess and Biosystems Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00449-024-03116-y","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究为厌氧氨氧化(Anammox)和厌氧氨氧化颗粒污泥(AnGS)处理低氮废水提供了重要途径。毯式过滤厌氧氨氧化(UBFA)系统通过缩短水力停留时间成功培养。厌氧氨氧化活性最高的中粒(1.0 ~ 2.0 mm)比例由0提高到28.5%,絮凝体(0 ~ 200 μm)比例由84.5%降低到17.6%。通过对AnGS的多维分析,探讨AnGS与EPS分泌、低SVI、高PN/PS、多种丝状细菌、AnAOB的关系。微电极示踪试验表明,厌氧氨氧化反应活性层主要在0 ~ 1500 μm, 200 ~ 400 μm活性最高,而反硝化活性和N2O产率主要分布在1500 ~ 2500 μm颗粒深层。研究表明,在UBFA系统中,Brocadia候选菌和Kuenenia候选菌是厌氧氨氧化菌的优势菌种,而中等颗粒中厌氧氨氧化菌的丰度较高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Upflow blanket filter anammox (UBFA) system treating low-nitrogen wastewater: high-efficient nitrogen removal, granules formation, N2O emission, and microbial succession.

This research provides an important approach for low-nitrogen wastewater treatment through anaerobic ammonium oxidation (Anammox), and Anammox granule sludge (AnGS) in the Upflow. Blanket Filter Anammox (UBFA) system through shortening the hydraulic retention time was successfully cultivated. The percentage of medium granules (1.0-2.0 mm) with the highest Anammox activity increased from 0 to 28.5%, and the proportion of flocs (0-200 μm) reduced from 84.5% to 17.6%. Through the multidimensional analysis of AnGS, the relationship between AnGS and EPS secretion, low SVI, high PN/PS, multiple filamentous bacteria, and AnAOB were explored. Microelectrode tracing tests demonstrated that the main anammox reaction active layer was 0-1500 μm, and the highest activity was observed at 200-400 μm, whereas denitrification activity and N2O production were mainly distributed in the granules deep layer of 1500-2500 μm. The research showed that Candidatus Brocadia and Candidatus Kuenenia were the predominant anammox species in the UBFA system, while the abundance of AnAOB was higher in medium granules.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioprocess and Biosystems Engineering
Bioprocess and Biosystems Engineering 工程技术-工程:化工
CiteScore
7.90
自引率
2.60%
发文量
147
审稿时长
2.6 months
期刊介绍: Bioprocess and Biosystems Engineering provides an international peer-reviewed forum to facilitate the discussion between engineering and biological science to find efficient solutions in the development and improvement of bioprocesses. The aim of the journal is to focus more attention on the multidisciplinary approaches for integrative bioprocess design. Of special interest are the rational manipulation of biosystems through metabolic engineering techniques to provide new biocatalysts as well as the model based design of bioprocesses (up-stream processing, bioreactor operation and downstream processing) that will lead to new and sustainable production processes. Contributions are targeted at new approaches for rational and evolutive design of cellular systems by taking into account the environment and constraints of technical production processes, integration of recombinant technology and process design, as well as new hybrid intersections such as bioinformatics and process systems engineering. Manuscripts concerning the design, simulation, experimental validation, control, and economic as well as ecological evaluation of novel processes using biosystems or parts thereof (e.g., enzymes, microorganisms, mammalian cells, plant cells, or tissue), their related products, or technical devices are also encouraged. The Editors will consider papers for publication based on novelty, their impact on biotechnological production and their contribution to the advancement of bioprocess and biosystems engineering science. Submission of papers dealing with routine aspects of bioprocess engineering (e.g., routine application of established methodologies, and description of established equipment) are discouraged.
期刊最新文献
Microbial community structure and functional characteristics in a membrane bioreactor used for real rural wastewater treatment. Metabolic engineering of Escherichia coli for enhanced production of p-coumaric acid via L-phenylalanine biosynthesis pathway. Bioprocess development for microbial production and purification of cellobiose lipids by the smut fungus Ustilago maydis DSM 4500. Enhancement of FK520 production in Streptomyces hygroscopicus var. ascomyceticus ATCC 14891 by overexpressing the regulatory gene fkbR2. Environmental bioremediation of pharmaceutical residues: microbial processes and technological innovations: a review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1