石墨氮化碳支持的硼量子点:二氮制氨反应的过渡金属替代品。

IF 2.3 3区 化学 Q3 CHEMISTRY, PHYSICAL Chemphyschem Pub Date : 2024-12-09 DOI:10.1002/cphc.202400766
Nikhil S Samudre, Sailaja Krishnamurty
{"title":"石墨氮化碳支持的硼量子点:二氮制氨反应的过渡金属替代品。","authors":"Nikhil S Samudre, Sailaja Krishnamurty","doi":"10.1002/cphc.202400766","DOIUrl":null,"url":null,"abstract":"<p><p>Presently, a sustainable electrochemical Nitrogen Reduction Reaction (NRR) has been essentially found to be viable on transition metal-based catalysts. However, being cost-effective and non-corrosive, metal-free catalysts present an ideal solution for a sustainable world. Herein, through a DFT-based study, we demonstrate metal-free NRR catalysts, boron quantum dots with 13 atoms as a case study and their chemically modified counterparts when anchored on graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) surface. The best catalyst among the studied, a silicon-doped boron quantum dot with a cagelike structure, is found to favour the dinitrogen to ammonia reaction pathway with a low liming potential and potential rate-determining step (PDS) of -0.11 V and 0.27 eV, respectively. The present work demonstrates as to how boron quantum dots, which are reported to be experimentally synthesised, can be exploited for ammonia synthesis when supported on the surface. These catalysts effectively suppress the HER, thus establishing its suitability as an ideal catalyst. The work also represents a futuristic pathway towards a metal-free catalyst for NRR.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202400766"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graphitic Carbon Nitride Supported Boron Quantum Dots: A Transition Metal Free Alternative for Di-Nitrogen to Ammonia Reaction.\",\"authors\":\"Nikhil S Samudre, Sailaja Krishnamurty\",\"doi\":\"10.1002/cphc.202400766\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Presently, a sustainable electrochemical Nitrogen Reduction Reaction (NRR) has been essentially found to be viable on transition metal-based catalysts. However, being cost-effective and non-corrosive, metal-free catalysts present an ideal solution for a sustainable world. Herein, through a DFT-based study, we demonstrate metal-free NRR catalysts, boron quantum dots with 13 atoms as a case study and their chemically modified counterparts when anchored on graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) surface. The best catalyst among the studied, a silicon-doped boron quantum dot with a cagelike structure, is found to favour the dinitrogen to ammonia reaction pathway with a low liming potential and potential rate-determining step (PDS) of -0.11 V and 0.27 eV, respectively. The present work demonstrates as to how boron quantum dots, which are reported to be experimentally synthesised, can be exploited for ammonia synthesis when supported on the surface. These catalysts effectively suppress the HER, thus establishing its suitability as an ideal catalyst. The work also represents a futuristic pathway towards a metal-free catalyst for NRR.</p>\",\"PeriodicalId\":9819,\"journal\":{\"name\":\"Chemphyschem\",\"volume\":\" \",\"pages\":\"e202400766\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemphyschem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cphc.202400766\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cphc.202400766","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

目前,在过渡金属基催化剂上,可持续的电化学氮还原反应(NRR)基本上是可行的。然而,无金属催化剂具有成本效益和无腐蚀性,是可持续发展世界的理想解决方案。在此,通过基于DFT的研究,我们展示了一种无金属的NRR催化剂,以13个原子的硼量子点为例,以及它们在石墨氮化碳(g-C3N4)表面锚定时的化学修饰对应物。结果表明,具有笼状结构的硅掺杂硼量子点具有较低的还原电位和-0.11 V和0.27 eV的电位决定步长,有利于二氮-氨反应路径。目前的工作证明了硼量子点是如何被实验合成的,当支撑在表面上时,可以用于氨合成。这些催化剂有效地抑制了HER,从而确立了其作为理想催化剂的适用性。这项工作也代表了通往无金属NRR催化剂的未来主义道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Graphitic Carbon Nitride Supported Boron Quantum Dots: A Transition Metal Free Alternative for Di-Nitrogen to Ammonia Reaction.

Presently, a sustainable electrochemical Nitrogen Reduction Reaction (NRR) has been essentially found to be viable on transition metal-based catalysts. However, being cost-effective and non-corrosive, metal-free catalysts present an ideal solution for a sustainable world. Herein, through a DFT-based study, we demonstrate metal-free NRR catalysts, boron quantum dots with 13 atoms as a case study and their chemically modified counterparts when anchored on graphitic carbon nitride (g-C3N4) surface. The best catalyst among the studied, a silicon-doped boron quantum dot with a cagelike structure, is found to favour the dinitrogen to ammonia reaction pathway with a low liming potential and potential rate-determining step (PDS) of -0.11 V and 0.27 eV, respectively. The present work demonstrates as to how boron quantum dots, which are reported to be experimentally synthesised, can be exploited for ammonia synthesis when supported on the surface. These catalysts effectively suppress the HER, thus establishing its suitability as an ideal catalyst. The work also represents a futuristic pathway towards a metal-free catalyst for NRR.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemphyschem
Chemphyschem 化学-物理:原子、分子和化学物理
CiteScore
4.60
自引率
3.40%
发文量
425
审稿时长
1.1 months
期刊介绍: ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies. ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.
期刊最新文献
127I Solid-State NMR Spectroscopy of Organic Periodates Featuring Halogen Bonded IO4̶ … IO4̶ Adducts. Progress and Perspectives of Lithium Isotope Separation. Geometrical and Electronic Structure of Fluorinated and Non-fluorinated Platinum(II) Tetraphenylporphyrin Complexes. A hidden chemical assembly mechanism: reconstruction-by-reconstruction cycle growth in HKUST-1 MOF layer synthesis. Advances in CO2 assisted oxidative dehydrogenation of light alkanes to light alkenes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1