通过丛枝菌根真菌接种促进鹰嘴豆生长:促进营养吸收和转移潜在的致病真菌群落。

IF 3.3 2区 生物学 Q2 MYCOLOGY Mycorrhiza Pub Date : 2024-12-10 DOI:10.1007/s00572-024-01174-4
Sulaimon Basiru, Khadija Ait Si Mhand, Rachid Elfermi, Imad Khatour, Khaoula Errafii, Jean Legeay, Mohamed Hijri
{"title":"通过丛枝菌根真菌接种促进鹰嘴豆生长:促进营养吸收和转移潜在的致病真菌群落。","authors":"Sulaimon Basiru, Khadija Ait Si Mhand, Rachid Elfermi, Imad Khatour, Khaoula Errafii, Jean Legeay, Mohamed Hijri","doi":"10.1007/s00572-024-01174-4","DOIUrl":null,"url":null,"abstract":"<p><p>Arbuscular mycorrhizal fungi (AMF) are the most widespread plant symbionts associated with plant roots, and theyperform numerous functions that contribute to plants' health and physiology. However, there are many knowledge gaps in how the interactions between AMF and root mycobiomes influence the performance of the host plants. To this end, we inoculated a local chickpea cultivar grown in agricultural soil under semi-controlled conditions with Rhizophagus irregularis. In addition to examining mycorrhizal colonization, plant biomass, and mineral nutrition, we sequenced the ITS region of the rDNA to assess the chickpea mycobiome and identify key fungal taxa potentially responding to R. irregularis inoculation. Our results showed that inoculation had a positive effect on chickpea biomass and mineral nutrition, especially the total aboveground phosphorus, potassium and sodium contents. Fusarium, Sporomia, Alternaria, and unknown Pleosporales were the most abundant taxa in the roots, while Stachybotris, Penicillum, Fusarium, Ascobolus, an unknown Pleosporales and Acrophialophora were the most abundant in the rhizosphere. Among the ASVs that either were enriched or depleted in the rhizosphere and roots are potential plant pathogens from the genera Didymella, Fusarium, Neocosmospora, and Stagonosporopsis. This study highlights the relevance of AMF inoculation not only for enhancing chickpea growth and mineral nutrition in semi-arid conditions but also for influencing the composition of the plants' fungal community which contributes to improved plant performance and resilience against biotic and abiotic stress.</p>","PeriodicalId":18965,"journal":{"name":"Mycorrhiza","volume":"35 1","pages":"1"},"PeriodicalIF":3.3000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing chickpea growth through arbuscular mycorrhizal fungus inoculation: facilitating nutrient uptake and shifting potential pathogenic fungal communities.\",\"authors\":\"Sulaimon Basiru, Khadija Ait Si Mhand, Rachid Elfermi, Imad Khatour, Khaoula Errafii, Jean Legeay, Mohamed Hijri\",\"doi\":\"10.1007/s00572-024-01174-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Arbuscular mycorrhizal fungi (AMF) are the most widespread plant symbionts associated with plant roots, and theyperform numerous functions that contribute to plants' health and physiology. However, there are many knowledge gaps in how the interactions between AMF and root mycobiomes influence the performance of the host plants. To this end, we inoculated a local chickpea cultivar grown in agricultural soil under semi-controlled conditions with Rhizophagus irregularis. In addition to examining mycorrhizal colonization, plant biomass, and mineral nutrition, we sequenced the ITS region of the rDNA to assess the chickpea mycobiome and identify key fungal taxa potentially responding to R. irregularis inoculation. Our results showed that inoculation had a positive effect on chickpea biomass and mineral nutrition, especially the total aboveground phosphorus, potassium and sodium contents. Fusarium, Sporomia, Alternaria, and unknown Pleosporales were the most abundant taxa in the roots, while Stachybotris, Penicillum, Fusarium, Ascobolus, an unknown Pleosporales and Acrophialophora were the most abundant in the rhizosphere. Among the ASVs that either were enriched or depleted in the rhizosphere and roots are potential plant pathogens from the genera Didymella, Fusarium, Neocosmospora, and Stagonosporopsis. This study highlights the relevance of AMF inoculation not only for enhancing chickpea growth and mineral nutrition in semi-arid conditions but also for influencing the composition of the plants' fungal community which contributes to improved plant performance and resilience against biotic and abiotic stress.</p>\",\"PeriodicalId\":18965,\"journal\":{\"name\":\"Mycorrhiza\",\"volume\":\"35 1\",\"pages\":\"1\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mycorrhiza\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00572-024-01174-4\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MYCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mycorrhiza","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00572-024-01174-4","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MYCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

丛枝菌根真菌(AMF)是与植物根系相关的最广泛的植物共生体,它们具有许多有助于植物健康和生理的功能。然而,在AMF和根真菌群落之间的相互作用如何影响寄主植物的性能方面,存在许多知识空白。为此,我们在半控制条件下用不规则根噬菌接种了一种生长在农业土壤中的当地鹰嘴豆品种。除了检测菌根定植、植物生物量和矿物质营养外,我们还对rDNA的ITS区域进行了测序,以评估鹰嘴豆真菌群落,并确定了可能对不规则菌接种产生反应的关键真菌分类群。结果表明,接种对鹰嘴豆生物量和矿质营养,尤其是地上总磷、钾和钠含量均有积极影响。根际以镰刀菌属(Stachybotris)、青霉菌属(Penicillum)、镰刀菌属(Fusarium)、异孢菌属(Alternaria)和未知多孢菌属(Acrophialophora)最多。在根际和根中富集或耗尽的asv中,有来自Didymella属、Fusarium属、Neocosmospora属和Stagonosporopsis属的潜在植物病原体。本研究强调了在半干旱条件下接种AMF不仅可以促进鹰嘴豆的生长和矿质营养,而且可以影响植物真菌群落的组成,从而有助于提高植物的生产性能和抵御生物和非生物胁迫的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing chickpea growth through arbuscular mycorrhizal fungus inoculation: facilitating nutrient uptake and shifting potential pathogenic fungal communities.

Arbuscular mycorrhizal fungi (AMF) are the most widespread plant symbionts associated with plant roots, and theyperform numerous functions that contribute to plants' health and physiology. However, there are many knowledge gaps in how the interactions between AMF and root mycobiomes influence the performance of the host plants. To this end, we inoculated a local chickpea cultivar grown in agricultural soil under semi-controlled conditions with Rhizophagus irregularis. In addition to examining mycorrhizal colonization, plant biomass, and mineral nutrition, we sequenced the ITS region of the rDNA to assess the chickpea mycobiome and identify key fungal taxa potentially responding to R. irregularis inoculation. Our results showed that inoculation had a positive effect on chickpea biomass and mineral nutrition, especially the total aboveground phosphorus, potassium and sodium contents. Fusarium, Sporomia, Alternaria, and unknown Pleosporales were the most abundant taxa in the roots, while Stachybotris, Penicillum, Fusarium, Ascobolus, an unknown Pleosporales and Acrophialophora were the most abundant in the rhizosphere. Among the ASVs that either were enriched or depleted in the rhizosphere and roots are potential plant pathogens from the genera Didymella, Fusarium, Neocosmospora, and Stagonosporopsis. This study highlights the relevance of AMF inoculation not only for enhancing chickpea growth and mineral nutrition in semi-arid conditions but also for influencing the composition of the plants' fungal community which contributes to improved plant performance and resilience against biotic and abiotic stress.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mycorrhiza
Mycorrhiza 生物-真菌学
CiteScore
8.20
自引率
2.60%
发文量
40
审稿时长
6-12 weeks
期刊介绍: Mycorrhiza is an international journal devoted to research into mycorrhizas - the widest symbioses in nature, involving plants and a range of soil fungi world-wide. The scope of Mycorrhiza covers all aspects of research into mycorrhizas, including molecular biology of the plants and fungi, fungal systematics, development and structure of mycorrhizas, and effects on plant physiology, productivity, reproduction and disease resistance. The scope also includes interactions between mycorrhizal fungi and other soil organisms and effects of mycorrhizas on plant biodiversity and ecosystem structure. Mycorrhiza contains original papers, short notes and review articles, along with commentaries and news items. It forms a platform for new concepts and discussions, and is a basis for a truly international forum of mycorrhizologists from all over the world.
期刊最新文献
Common mycorrhizal networks improve survival and mediate facilitative plant interactions among Andropogon gerardii seedlings under drought stress. AM fungus plant colonization rather than an Epichloë endophyte attracts fall armyworm feeding. Lead (Pb) tolerance in the ectomycorrhizal fungi Suillus brevipes and S. tomentosus. Arbuscular mycorrhizal fungi travel the world with harvested underground crops. Is arbuscular mycorrhizal fungal addition beneficial to potato systems? A meta-analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1