经颅近红外光通过AKT1/mTOR通路促进老年小鼠术后神经认知障碍的再髓鞘形成

IF 2.9 3区 医学 Q2 NEUROSCIENCES Neuroscience Pub Date : 2025-01-26 Epub Date: 2024-12-07 DOI:10.1016/j.neuroscience.2024.12.007
Jiawei Chen, Yuqing He, Junying Zhong, Yanni Fu, Shangyan Yuan, Longjie Hou, Xiaojun Zhang, Fanqing Meng, Wei-Jye Lin, Fengtao Ji, Zhi Wang
{"title":"经颅近红外光通过AKT1/mTOR通路促进老年小鼠术后神经认知障碍的再髓鞘形成","authors":"Jiawei Chen, Yuqing He, Junying Zhong, Yanni Fu, Shangyan Yuan, Longjie Hou, Xiaojun Zhang, Fanqing Meng, Wei-Jye Lin, Fengtao Ji, Zhi Wang","doi":"10.1016/j.neuroscience.2024.12.007","DOIUrl":null,"url":null,"abstract":"<p><p>Postoperative neurocognitive disorder (PND) is a prevalent complication following surgery and anesthesia, characterized by progressive cognitive decline. The precise etiology of PND remains unknown, and effective targeted therapeutic strategies are lacking. Transcranial near-infrared light (tNIRL) has shown potential benefits for cognitive dysfunction diseases, but its effect on PND remains unclear. Our previous research indicated a close association between demyelination and PND. In other central nervous system (CNS) disorders, tNIRL has been demonstrated to facilitate remyelination in response to demyelination. In this study, we established the PND model in 18-month-old male C57BL/6 mice using isoflurane anesthesia combined with left common carotid artery exposure. Following surgery, PND-aged mice were subjected to daily 2.5-minute tNIRL treatment at 810 nm for three consecutive days. Subsequently, we observed that tNIRL significantly improved cognitive performance and reduced inflammatory cytokine levels in the hippocampus of PND mice. Furthermore, tNIRL increased the expression of oligodendrocyte transcription factor 2 (OLIG2) and myelin basic protein (MBP), promoting remyelination while enhancing synaptic function-associated proteins such as synaptophysin (SYP) and postsynaptic density protein 95 (PSD95). Further investigation revealed that tNIRL may activate the AKT1/mTOR pathway to facilitate remyelination in PND mice. These findings indicate that tNIRL is a novel non-invasive therapeutic approach for treating PND.</p>","PeriodicalId":19142,"journal":{"name":"Neuroscience","volume":" ","pages":"358-368"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transcranial near-infrared light promotes remyelination through AKT1/mTOR pathway to ameliorate postoperative neurocognitive disorder in aged mice.\",\"authors\":\"Jiawei Chen, Yuqing He, Junying Zhong, Yanni Fu, Shangyan Yuan, Longjie Hou, Xiaojun Zhang, Fanqing Meng, Wei-Jye Lin, Fengtao Ji, Zhi Wang\",\"doi\":\"10.1016/j.neuroscience.2024.12.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Postoperative neurocognitive disorder (PND) is a prevalent complication following surgery and anesthesia, characterized by progressive cognitive decline. The precise etiology of PND remains unknown, and effective targeted therapeutic strategies are lacking. Transcranial near-infrared light (tNIRL) has shown potential benefits for cognitive dysfunction diseases, but its effect on PND remains unclear. Our previous research indicated a close association between demyelination and PND. In other central nervous system (CNS) disorders, tNIRL has been demonstrated to facilitate remyelination in response to demyelination. In this study, we established the PND model in 18-month-old male C57BL/6 mice using isoflurane anesthesia combined with left common carotid artery exposure. Following surgery, PND-aged mice were subjected to daily 2.5-minute tNIRL treatment at 810 nm for three consecutive days. Subsequently, we observed that tNIRL significantly improved cognitive performance and reduced inflammatory cytokine levels in the hippocampus of PND mice. Furthermore, tNIRL increased the expression of oligodendrocyte transcription factor 2 (OLIG2) and myelin basic protein (MBP), promoting remyelination while enhancing synaptic function-associated proteins such as synaptophysin (SYP) and postsynaptic density protein 95 (PSD95). Further investigation revealed that tNIRL may activate the AKT1/mTOR pathway to facilitate remyelination in PND mice. These findings indicate that tNIRL is a novel non-invasive therapeutic approach for treating PND.</p>\",\"PeriodicalId\":19142,\"journal\":{\"name\":\"Neuroscience\",\"volume\":\" \",\"pages\":\"358-368\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.neuroscience.2024.12.007\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuroscience.2024.12.007","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

术后神经认知障碍(PND)是手术和麻醉后常见的并发症,以进行性认知能力下降为特征。PND的确切病因尚不清楚,缺乏有效的靶向治疗策略。经颅近红外光(tNIRL)已显示出对认知功能障碍疾病的潜在益处,但其对PND的影响尚不清楚。我们之前的研究表明脱髓鞘与PND密切相关。在其他中枢神经系统(CNS)疾病中,tNIRL已被证明在脱髓鞘反应中促进髓鞘再生。本研究采用异氟醚麻醉联合左颈总动脉暴露,建立18月龄雄性C57BL/6小鼠PND模型。手术后,pnd衰老小鼠连续3天,每天接受2.5分钟810 nm的tNIRL治疗。随后,我们观察到tNIRL显著改善了PND小鼠的认知能力,并降低了海马中的炎症细胞因子水平。此外,tNIRL增加了少突胶质细胞转录因子2 (OLIG2)和髓鞘碱性蛋白(MBP)的表达,促进髓鞘再生,同时增强突触功能相关蛋白如synaptophysin (SYP)和突触后密度蛋白95 (PSD95)。进一步研究发现,tNIRL可能激活AKT1/mTOR通路,促进PND小鼠的髓鞘再生。这些发现表明,tNIRL是一种新的无创治疗PND的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Transcranial near-infrared light promotes remyelination through AKT1/mTOR pathway to ameliorate postoperative neurocognitive disorder in aged mice.

Postoperative neurocognitive disorder (PND) is a prevalent complication following surgery and anesthesia, characterized by progressive cognitive decline. The precise etiology of PND remains unknown, and effective targeted therapeutic strategies are lacking. Transcranial near-infrared light (tNIRL) has shown potential benefits for cognitive dysfunction diseases, but its effect on PND remains unclear. Our previous research indicated a close association between demyelination and PND. In other central nervous system (CNS) disorders, tNIRL has been demonstrated to facilitate remyelination in response to demyelination. In this study, we established the PND model in 18-month-old male C57BL/6 mice using isoflurane anesthesia combined with left common carotid artery exposure. Following surgery, PND-aged mice were subjected to daily 2.5-minute tNIRL treatment at 810 nm for three consecutive days. Subsequently, we observed that tNIRL significantly improved cognitive performance and reduced inflammatory cytokine levels in the hippocampus of PND mice. Furthermore, tNIRL increased the expression of oligodendrocyte transcription factor 2 (OLIG2) and myelin basic protein (MBP), promoting remyelination while enhancing synaptic function-associated proteins such as synaptophysin (SYP) and postsynaptic density protein 95 (PSD95). Further investigation revealed that tNIRL may activate the AKT1/mTOR pathway to facilitate remyelination in PND mice. These findings indicate that tNIRL is a novel non-invasive therapeutic approach for treating PND.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neuroscience
Neuroscience 医学-神经科学
CiteScore
6.20
自引率
0.00%
发文量
394
审稿时长
52 days
期刊介绍: Neuroscience publishes papers describing the results of original research on any aspect of the scientific study of the nervous system. Any paper, however short, will be considered for publication provided that it reports significant, new and carefully confirmed findings with full experimental details.
期刊最新文献
Effects of ascorbic acid on myelination in offspring of advanced maternal age. Repeated exposure to high-dose nicotine induces prefrontal gray matter atrophy in adolescent male rats. Bayesian brain theory: Computational neuroscience of belief. Effects and mechanisms of Apelin in treating central nervous system diseases. Neuroticism and cerebral small vessel disease: A genetic correlation and Mendelian randomization analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1