轻度至重度干旱胁迫下藜麦和玉米PSII光化学比较

IF 2.1 4区 生物学 Q2 PLANT SCIENCES Photosynthetica Pub Date : 2022-05-27 eCollection Date: 2022-01-01 DOI:10.32615/ps.2022.022
C Malan, J M Berner
{"title":"轻度至重度干旱胁迫下藜麦和玉米PSII光化学比较","authors":"C Malan, J M Berner","doi":"10.32615/ps.2022.022","DOIUrl":null,"url":null,"abstract":"<p><p>Quinoa has been identified as a climate-resilient crop that can overcome unfavorable conditions. This study explores the photochemical efficiency of quinoa compared to maize subjected to drought stress. The JIP-test was used to assess the photochemical efficiency of both crops. Proline content, leaf water potential, and membrane leakage were also determined. The maximum photochemical efficiency (F<sub>v</sub>/F<sub>m</sub>) did not change for quinoa and maize under moderate stress. However, severe drought conditions resulted in a decline in F<sub>v</sub>/F<sub>m</sub> in maize but not quinoa. Furthermore, the PSII performance index (PI<sub>ABS,total</sub>) declined steadily in maize soon after the onset of drought stress. The decline in the PI<sub>ABS,total</sub> values for quinoa was only observed after a period of severe drought stress. Membrane leakage was also more prevalent in the maize plants, while quinoa had higher proline contents. This study concluded that both quinoa and maize maintained PSII structure and function under moderate drought conditions. However, only quinoa maintained PSII structure and function under severe drought conditions.</p>","PeriodicalId":20157,"journal":{"name":"Photosynthetica","volume":"60 3","pages":"362-371"},"PeriodicalIF":2.1000,"publicationDate":"2022-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11558597/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comparative PSII photochemistry of quinoa and maize under mild to severe drought stress.\",\"authors\":\"C Malan, J M Berner\",\"doi\":\"10.32615/ps.2022.022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Quinoa has been identified as a climate-resilient crop that can overcome unfavorable conditions. This study explores the photochemical efficiency of quinoa compared to maize subjected to drought stress. The JIP-test was used to assess the photochemical efficiency of both crops. Proline content, leaf water potential, and membrane leakage were also determined. The maximum photochemical efficiency (F<sub>v</sub>/F<sub>m</sub>) did not change for quinoa and maize under moderate stress. However, severe drought conditions resulted in a decline in F<sub>v</sub>/F<sub>m</sub> in maize but not quinoa. Furthermore, the PSII performance index (PI<sub>ABS,total</sub>) declined steadily in maize soon after the onset of drought stress. The decline in the PI<sub>ABS,total</sub> values for quinoa was only observed after a period of severe drought stress. Membrane leakage was also more prevalent in the maize plants, while quinoa had higher proline contents. This study concluded that both quinoa and maize maintained PSII structure and function under moderate drought conditions. However, only quinoa maintained PSII structure and function under severe drought conditions.</p>\",\"PeriodicalId\":20157,\"journal\":{\"name\":\"Photosynthetica\",\"volume\":\"60 3\",\"pages\":\"362-371\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11558597/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photosynthetica\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.32615/ps.2022.022\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photosynthetica","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.32615/ps.2022.022","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

藜麦已被确定为一种能够克服不利条件的气候适应性作物。本研究探讨了藜麦与玉米在干旱胁迫下的光化学效率。采用jip试验评价两种作物的光化学效率。测定脯氨酸含量、叶片水势和膜渗漏。在中等胁迫下,藜麦和玉米的最大光化学效率(Fv/Fm)没有变化。然而,严重的干旱条件导致玉米的Fv/Fm下降,而藜麦没有。此外,干旱胁迫发生后不久,玉米的PSII性能指数(PIABS,total)稳步下降。藜麦PIABS值的下降是在一段时间的严重干旱胁迫后才出现的。膜渗漏在玉米植株中更为普遍,而藜麦的脯氨酸含量较高。在中等干旱条件下,藜麦和玉米均保持了PSII的结构和功能。然而,只有藜麦在严重干旱条件下保持了PSII的结构和功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparative PSII photochemistry of quinoa and maize under mild to severe drought stress.

Quinoa has been identified as a climate-resilient crop that can overcome unfavorable conditions. This study explores the photochemical efficiency of quinoa compared to maize subjected to drought stress. The JIP-test was used to assess the photochemical efficiency of both crops. Proline content, leaf water potential, and membrane leakage were also determined. The maximum photochemical efficiency (Fv/Fm) did not change for quinoa and maize under moderate stress. However, severe drought conditions resulted in a decline in Fv/Fm in maize but not quinoa. Furthermore, the PSII performance index (PIABS,total) declined steadily in maize soon after the onset of drought stress. The decline in the PIABS,total values for quinoa was only observed after a period of severe drought stress. Membrane leakage was also more prevalent in the maize plants, while quinoa had higher proline contents. This study concluded that both quinoa and maize maintained PSII structure and function under moderate drought conditions. However, only quinoa maintained PSII structure and function under severe drought conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Photosynthetica
Photosynthetica 生物-植物科学
CiteScore
5.60
自引率
7.40%
发文量
55
审稿时长
3.8 months
期刊介绍: Photosynthetica publishes original scientific papers and brief communications, reviews on specialized topics, book reviews and announcements and reports covering wide range of photosynthesis research or research including photosynthetic parameters of both experimental and theoretical nature and dealing with physiology, biophysics, biochemistry, molecular biology on one side and leaf optics, stress physiology and ecology of photosynthesis on the other side. The language of journal is English (British or American). Papers should not be published or under consideration for publication elsewhere.
期刊最新文献
On "P750s" in cyanobacteria: A historical perspective. Impact of exogenous rhamnolipids on plant photosynthesis and biochemical parameters under prolonged heat stress. Chloroplast antioxidant reactions associated with zinc-alleviating effects on iron toxicity in wheat seedlings. Using hyperspectral reflectance to detect changes in photosynthetic activity in Atractylodes chinensis leaves as a function of decreasing soil water content. Ascorbic acid is involved in melatonin-induced salinity tolerance of maize (Zea mays L.) by regulating antioxidant and photosynthetic capacities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1