Huanjun Su, Rachel Ka Man Chun, Elie De Lestrange-Anginieur
{"title":"控制阅读能见度下视觉衰减形式对短期眼睛变化的影响。","authors":"Huanjun Su, Rachel Ka Man Chun, Elie De Lestrange-Anginieur","doi":"10.2147/EB.S493775","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Animal studies have suggested that visual degradation impacts eye growth due to the attenuation of high spatial frequencies. However, the influence of perceptual visibility remains unclear in humans. The aim of this study was to investigate the impact of visibility on visual attenuation-related eye changes during reading.</p><p><strong>Methods: </strong>Axial length (AxL) and choroidal thickness (ChT) changes associated with reading tasks were measured in two separate experiments. In the first experiment, the reading task was conducted under different forms of visual attenuation (contrast, resolution, defocus, noise, and crowding). For each form of visual attenuation, the text was set at a sub-threshold level of visibility, evaluated via prior measurement of reading performance, and kept constant via adaptive control of the intensity of the stimulation. Each sub-threshold reading condition was compared with a supra-threshold reading text, serving as control. In the second experiment, the effect of visibility on lens-induced defocus was further examined by comparing the effect of text stimulation with an equivalent dioptric of 5.5 D under sub- and supra-threshold levels of resolution.</p><p><strong>Results: </strong>Near distance reading with supra-threshold texts caused eye elongation (AxL: +12.942 µm ± 2.147 µm; ChT: -3.192 µm ± 1.158 µm). Additional defocusing failed to exacerbate axial elongation under sub-threshold text visibility (mean difference: -0.135 µm ± 2.783 µm), revealing a clear inhibitory effect of lowering visibility on eye changes. Other forms of visual degradation, including crowding (mean difference: 6.153 µm ± 2.127 µm) and noise (mean difference: 5.02 µm ± 2.812 µm) also showed an inhibitory effect on eye elongation. The significant effect of crowding indicated that post-retinal mechanisms, involving attentional processes related to crowded characters, may play a role in the influence of visibility.</p><p><strong>Conclusion: </strong>Although the featural composition of visual stimulation can drastically influence eye changes, this study revealed an important mediating role of visibility, previously underscored in chick studies, which warrants further explorations of the impact of post-retinal processes in eye growth.</p>","PeriodicalId":51844,"journal":{"name":"Eye and Brain","volume":"16 ","pages":"133-146"},"PeriodicalIF":3.1000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11625421/pdf/","citationCount":"0","resultStr":"{\"title\":\"Impact of Forms of Visual Attenuation on Short-Term Eye Changes Under Controlled Reading Visibility.\",\"authors\":\"Huanjun Su, Rachel Ka Man Chun, Elie De Lestrange-Anginieur\",\"doi\":\"10.2147/EB.S493775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Animal studies have suggested that visual degradation impacts eye growth due to the attenuation of high spatial frequencies. However, the influence of perceptual visibility remains unclear in humans. The aim of this study was to investigate the impact of visibility on visual attenuation-related eye changes during reading.</p><p><strong>Methods: </strong>Axial length (AxL) and choroidal thickness (ChT) changes associated with reading tasks were measured in two separate experiments. In the first experiment, the reading task was conducted under different forms of visual attenuation (contrast, resolution, defocus, noise, and crowding). For each form of visual attenuation, the text was set at a sub-threshold level of visibility, evaluated via prior measurement of reading performance, and kept constant via adaptive control of the intensity of the stimulation. Each sub-threshold reading condition was compared with a supra-threshold reading text, serving as control. In the second experiment, the effect of visibility on lens-induced defocus was further examined by comparing the effect of text stimulation with an equivalent dioptric of 5.5 D under sub- and supra-threshold levels of resolution.</p><p><strong>Results: </strong>Near distance reading with supra-threshold texts caused eye elongation (AxL: +12.942 µm ± 2.147 µm; ChT: -3.192 µm ± 1.158 µm). Additional defocusing failed to exacerbate axial elongation under sub-threshold text visibility (mean difference: -0.135 µm ± 2.783 µm), revealing a clear inhibitory effect of lowering visibility on eye changes. Other forms of visual degradation, including crowding (mean difference: 6.153 µm ± 2.127 µm) and noise (mean difference: 5.02 µm ± 2.812 µm) also showed an inhibitory effect on eye elongation. The significant effect of crowding indicated that post-retinal mechanisms, involving attentional processes related to crowded characters, may play a role in the influence of visibility.</p><p><strong>Conclusion: </strong>Although the featural composition of visual stimulation can drastically influence eye changes, this study revealed an important mediating role of visibility, previously underscored in chick studies, which warrants further explorations of the impact of post-retinal processes in eye growth.</p>\",\"PeriodicalId\":51844,\"journal\":{\"name\":\"Eye and Brain\",\"volume\":\"16 \",\"pages\":\"133-146\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11625421/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eye and Brain\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2147/EB.S493775\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eye and Brain","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2147/EB.S493775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
Impact of Forms of Visual Attenuation on Short-Term Eye Changes Under Controlled Reading Visibility.
Purpose: Animal studies have suggested that visual degradation impacts eye growth due to the attenuation of high spatial frequencies. However, the influence of perceptual visibility remains unclear in humans. The aim of this study was to investigate the impact of visibility on visual attenuation-related eye changes during reading.
Methods: Axial length (AxL) and choroidal thickness (ChT) changes associated with reading tasks were measured in two separate experiments. In the first experiment, the reading task was conducted under different forms of visual attenuation (contrast, resolution, defocus, noise, and crowding). For each form of visual attenuation, the text was set at a sub-threshold level of visibility, evaluated via prior measurement of reading performance, and kept constant via adaptive control of the intensity of the stimulation. Each sub-threshold reading condition was compared with a supra-threshold reading text, serving as control. In the second experiment, the effect of visibility on lens-induced defocus was further examined by comparing the effect of text stimulation with an equivalent dioptric of 5.5 D under sub- and supra-threshold levels of resolution.
Results: Near distance reading with supra-threshold texts caused eye elongation (AxL: +12.942 µm ± 2.147 µm; ChT: -3.192 µm ± 1.158 µm). Additional defocusing failed to exacerbate axial elongation under sub-threshold text visibility (mean difference: -0.135 µm ± 2.783 µm), revealing a clear inhibitory effect of lowering visibility on eye changes. Other forms of visual degradation, including crowding (mean difference: 6.153 µm ± 2.127 µm) and noise (mean difference: 5.02 µm ± 2.812 µm) also showed an inhibitory effect on eye elongation. The significant effect of crowding indicated that post-retinal mechanisms, involving attentional processes related to crowded characters, may play a role in the influence of visibility.
Conclusion: Although the featural composition of visual stimulation can drastically influence eye changes, this study revealed an important mediating role of visibility, previously underscored in chick studies, which warrants further explorations of the impact of post-retinal processes in eye growth.
期刊介绍:
Eye and Brain is an international, peer-reviewed, open access journal focusing on basic research, clinical findings, and expert reviews in the field of visual science and neuro-ophthalmology. The journal’s unique focus is the link between two well-known visual centres, the eye and the brain, with an emphasis on the importance of such connections. All aspects of clinical and especially basic research on the visual system are addressed within the journal as well as significant future directions in vision research and therapeutic measures. This unique journal focuses on neurological aspects of vision – both physiological and pathological. The scope of the journal spans from the cornea to the associational visual cortex and all the visual centers in between. Topics range from basic biological mechanisms to therapeutic treatment, from simple organisms to humans, and utilizing techniques from molecular biology to behavior. The journal especially welcomes primary research articles or review papers that make the connection between the eye and the brain. Specific areas covered in the journal include: Physiology and pathophysiology of visual centers, Eye movement disorders and strabismus, Cellular, biochemical, and molecular features of the visual system, Structural and functional organization of the eye and of the visual cortex, Metabolic demands of the visual system, Diseases and disorders with neuro-ophthalmic manifestations, Clinical and experimental neuro-ophthalmology and visual system pathologies, Epidemiological studies.