增强乳腺 X 射线摄影:全面回顾提高图像质量的计算机方法。

IF 5 Q1 ENGINEERING, BIOMEDICAL Progress in biomedical engineering (Bristol, England) Pub Date : 2024-09-26 DOI:10.1088/2516-1091/ad776b
Joana Cristo Santos, Miriam Seoane Santos, Pedro Henriques Abreu
{"title":"增强乳腺 X 射线摄影:全面回顾提高图像质量的计算机方法。","authors":"Joana Cristo Santos, Miriam Seoane Santos, Pedro Henriques Abreu","doi":"10.1088/2516-1091/ad776b","DOIUrl":null,"url":null,"abstract":"<p><p>Mammography imaging remains the gold standard for breast cancer detection and diagnosis, but challenges in image quality can lead to misdiagnosis, increased radiation exposure, and higher healthcare costs. This comprehensive review evaluates traditional and machine learning-based techniques for improving mammography image quality, aiming to benefit clinicians and enhance diagnostic accuracy. Our literature search, spanning 2015 - 2024, identified 115 articles focusing on contrast enhancement and noise reduction methods, including histogram equalization, filtering, unsharp masking, fuzzy logic, transform-based techniques, and advanced machine learning approaches. Machine learning, particularly architectures integrating denoising autoencoders with convolutional neural networks, emerged as highly effective in enhancing image quality without compromising detail. The discussion highlights the success of these techniques in improving mammography images' visual quality. However, challenges such as high noise ratios, inconsistent evaluation metrics, and limited open-source datasets persist. Addressing these issues offers opportunities for future research to further advance mammography image enhancement methodologies.</p>","PeriodicalId":74582,"journal":{"name":"Progress in biomedical engineering (Bristol, England)","volume":"6 4","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing mammography: a comprehensive review of computer methods for improving image quality.\",\"authors\":\"Joana Cristo Santos, Miriam Seoane Santos, Pedro Henriques Abreu\",\"doi\":\"10.1088/2516-1091/ad776b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mammography imaging remains the gold standard for breast cancer detection and diagnosis, but challenges in image quality can lead to misdiagnosis, increased radiation exposure, and higher healthcare costs. This comprehensive review evaluates traditional and machine learning-based techniques for improving mammography image quality, aiming to benefit clinicians and enhance diagnostic accuracy. Our literature search, spanning 2015 - 2024, identified 115 articles focusing on contrast enhancement and noise reduction methods, including histogram equalization, filtering, unsharp masking, fuzzy logic, transform-based techniques, and advanced machine learning approaches. Machine learning, particularly architectures integrating denoising autoencoders with convolutional neural networks, emerged as highly effective in enhancing image quality without compromising detail. The discussion highlights the success of these techniques in improving mammography images' visual quality. However, challenges such as high noise ratios, inconsistent evaluation metrics, and limited open-source datasets persist. Addressing these issues offers opportunities for future research to further advance mammography image enhancement methodologies.</p>\",\"PeriodicalId\":74582,\"journal\":{\"name\":\"Progress in biomedical engineering (Bristol, England)\",\"volume\":\"6 4\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in biomedical engineering (Bristol, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2516-1091/ad776b\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in biomedical engineering (Bristol, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2516-1091/ad776b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing mammography: a comprehensive review of computer methods for improving image quality.

Mammography imaging remains the gold standard for breast cancer detection and diagnosis, but challenges in image quality can lead to misdiagnosis, increased radiation exposure, and higher healthcare costs. This comprehensive review evaluates traditional and machine learning-based techniques for improving mammography image quality, aiming to benefit clinicians and enhance diagnostic accuracy. Our literature search, spanning 2015 - 2024, identified 115 articles focusing on contrast enhancement and noise reduction methods, including histogram equalization, filtering, unsharp masking, fuzzy logic, transform-based techniques, and advanced machine learning approaches. Machine learning, particularly architectures integrating denoising autoencoders with convolutional neural networks, emerged as highly effective in enhancing image quality without compromising detail. The discussion highlights the success of these techniques in improving mammography images' visual quality. However, challenges such as high noise ratios, inconsistent evaluation metrics, and limited open-source datasets persist. Addressing these issues offers opportunities for future research to further advance mammography image enhancement methodologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.40
自引率
0.00%
发文量
0
期刊最新文献
Development of bioengineered 3D patient derived breast cancer organoid model focusing dynamic fibroblast-stem cell reciprocity. Biomedical applications of the engineered AIEgen-lipid nanostructurein vitroandin vivo. Cell stretching devices integrated with live cell imaging: a powerful approach to study how cells react to mechanical cues. Mathematical models on bone cell homeostasis and kinetics in the presence of electric fields: a review. A review of computational optimization of bone scaffold architecture: methods, challenges, and perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1