MAFcounter:一个计算在MAF文件中k-mers出现次数的有效工具。

ArXiv Pub Date : 2024-11-29
Michail Patsakis, Kimonas Provatas, Ioannis Mouratidis, Ilias Georgakopoulos-Soares
{"title":"MAFcounter:一个计算在MAF文件中k-mers出现次数的有效工具。","authors":"Michail Patsakis, Kimonas Provatas, Ioannis Mouratidis, Ilias Georgakopoulos-Soares","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>With the rapid expansion of large-scale biological datasets, DNA and protein sequence alignments have become essential for comparative genomics and proteomics. These alignments facilitate the exploration of sequence similarity patterns, providing valuable insights into sequence conservation, evolutionary relationships and for functional analyses. Typically, sequence alignments are stored in formats such as the Multiple Alignment Format (MAF). Counting k-mer occurrences is a crucial task in many computational biology applications, but currently, there is no algorithm designed for k-mer counting in alignment files.</p><p><strong>Results: </strong>We have developed MAFcounter, the first k-mer counter dedicated to alignment files. MAFcounter is multithreaded, fast, and memory efficient, enabling k-mer counting in DNA and protein sequence alignment files.</p><p><strong>Availability: </strong>The MAFcounter package and its Python bindings are released under GPL license as a multi-platform application and are available at: https://github.com/Georgakopoulos-Soares-lab/MAFcounter.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11623707/pdf/","citationCount":"0","resultStr":"{\"title\":\"MAFcounter: An efficient tool for counting the occurrences of k-mers in MAF files.\",\"authors\":\"Michail Patsakis, Kimonas Provatas, Ioannis Mouratidis, Ilias Georgakopoulos-Soares\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Motivation: </strong>With the rapid expansion of large-scale biological datasets, DNA and protein sequence alignments have become essential for comparative genomics and proteomics. These alignments facilitate the exploration of sequence similarity patterns, providing valuable insights into sequence conservation, evolutionary relationships and for functional analyses. Typically, sequence alignments are stored in formats such as the Multiple Alignment Format (MAF). Counting k-mer occurrences is a crucial task in many computational biology applications, but currently, there is no algorithm designed for k-mer counting in alignment files.</p><p><strong>Results: </strong>We have developed MAFcounter, the first k-mer counter dedicated to alignment files. MAFcounter is multithreaded, fast, and memory efficient, enabling k-mer counting in DNA and protein sequence alignment files.</p><p><strong>Availability: </strong>The MAFcounter package and its Python bindings are released under GPL license as a multi-platform application and are available at: https://github.com/Georgakopoulos-Soares-lab/MAFcounter.</p>\",\"PeriodicalId\":93888,\"journal\":{\"name\":\"ArXiv\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11623707/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ArXiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

动机:随着大规模生物数据集的快速扩展,DNA和蛋白质序列比对已经成为比较基因组学和蛋白质组学的必要条件。这些比对促进了序列相似性模式的探索,为序列保护、进化关系和功能分析提供了有价值的见解。通常,序列对齐以多重对齐格式(Multiple Alignment Format, MAF)等格式存储。在许多计算生物学应用中,计算k-mer的出现次数是一项至关重要的任务,但目前,还没有为排列文件中的k-mer计数设计的算法。结果:研制出了国内第一个用于比对文件的k-mer计数器MAFcounter。MAFcounter是多线程的、快速的、内存高效的,能够在DNA和蛋白质序列比对文件中进行k-mer计数。可用性:MAFcounter包及其Python绑定是在GPL许可下作为多平台应用程序发布的,可以在https://github.com/Georgakopoulos-Soares-lab/MAFcounter上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MAFcounter: An efficient tool for counting the occurrences of k-mers in MAF files.

Motivation: With the rapid expansion of large-scale biological datasets, DNA and protein sequence alignments have become essential for comparative genomics and proteomics. These alignments facilitate the exploration of sequence similarity patterns, providing valuable insights into sequence conservation, evolutionary relationships and for functional analyses. Typically, sequence alignments are stored in formats such as the Multiple Alignment Format (MAF). Counting k-mer occurrences is a crucial task in many computational biology applications, but currently, there is no algorithm designed for k-mer counting in alignment files.

Results: We have developed MAFcounter, the first k-mer counter dedicated to alignment files. MAFcounter is multithreaded, fast, and memory efficient, enabling k-mer counting in DNA and protein sequence alignment files.

Availability: The MAFcounter package and its Python bindings are released under GPL license as a multi-platform application and are available at: https://github.com/Georgakopoulos-Soares-lab/MAFcounter.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Grade Inflation in Generative Models. A recent evaluation on the performance of LLMs on radiation oncology physics using questions of randomly shuffled options. A Systematic Computational Framework for Practical Identifiability Analysis in Mathematical Models Arising from Biology. Back to the Continuous Attractor. Inferring resource competition in microbial communities from time series.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1