{"title":"Visualizing kinetics of diffusional penetration in tissues using OCT-based strain imaging","authors":"Y.M. Alexandrovskaya, A.A. Sovetsky, E.M. Kasianenko, A.L. Matveyev, L.A. Matveev, O.I. Baum, V.Y. Zaitsev","doi":"10.1016/j.addr.2024.115484","DOIUrl":null,"url":null,"abstract":"We report a new application of the recently developed technique, Optical Coherence Elastography (OCE) to quantitatively visualize kinetics of osmotic strains due to diffusive penetration of various osmotically active solutions into biological tissues. The magnitude of osmotic strains may range from fractions of one per cent to tens per cent. The visualized spatio-tempotal dynamics of the strains reflect the rates of osmotic dehydration and diffusional penetration of the active solute, which can be controlled by concentration of the solution components. Main features of the OCE-visualized diffusion-front dynamics well agree with Fick’s theory yielding diffusivity coefficients consistent with the literature data. The OCE technique may be used to study diffusion of a broad variety of osmotically-active substances − drugs, cosmetic agents, preservative solutions, so-called optical clearing agents enhancing the depth of optical visualization, etc. The corresponding experimental examples, some results of theoretical interpretations and numerical simulations are given.","PeriodicalId":7254,"journal":{"name":"Advanced drug delivery reviews","volume":"19 1","pages":""},"PeriodicalIF":15.2000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced drug delivery reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.addr.2024.115484","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Visualizing kinetics of diffusional penetration in tissues using OCT-based strain imaging
We report a new application of the recently developed technique, Optical Coherence Elastography (OCE) to quantitatively visualize kinetics of osmotic strains due to diffusive penetration of various osmotically active solutions into biological tissues. The magnitude of osmotic strains may range from fractions of one per cent to tens per cent. The visualized spatio-tempotal dynamics of the strains reflect the rates of osmotic dehydration and diffusional penetration of the active solute, which can be controlled by concentration of the solution components. Main features of the OCE-visualized diffusion-front dynamics well agree with Fick’s theory yielding diffusivity coefficients consistent with the literature data. The OCE technique may be used to study diffusion of a broad variety of osmotically-active substances − drugs, cosmetic agents, preservative solutions, so-called optical clearing agents enhancing the depth of optical visualization, etc. The corresponding experimental examples, some results of theoretical interpretations and numerical simulations are given.
期刊介绍:
The aim of the Journal is to provide a forum for the critical analysis of advanced drug and gene delivery systems and their applications in human and veterinary medicine. The Journal has a broad scope, covering the key issues for effective drug and gene delivery, from administration to site-specific delivery.
In general, the Journal publishes review articles in a Theme Issue format. Each Theme Issue provides a comprehensive and critical examination of current and emerging research on the design and development of advanced drug and gene delivery systems and their application to experimental and clinical therapeutics. The goal is to illustrate the pivotal role of a multidisciplinary approach to modern drug delivery, encompassing the application of sound biological and physicochemical principles to the engineering of drug delivery systems to meet the therapeutic need at hand. Importantly the Editorial Team of ADDR asks that the authors effectively window the extensive volume of literature, pick the important contributions and explain their importance, produce a forward looking identification of the challenges facing the field and produce a Conclusions section with expert recommendations to address the issues.