{"title":"交替最小化鲁棒相位恢复","authors":"Seonho Kim;Kiryung Lee","doi":"10.1109/TSP.2024.3515008","DOIUrl":null,"url":null,"abstract":"We consider a least absolute deviation (LAD) approach to the robust phase retrieval problem that aims to recover a signal from its absolute measurements corrupted with sparse noise. To solve the resulting non-convex optimization problem, we propose a robust alternating minimization (Robust-AM) derived as an unconstrained Gauss-Newton method. To solve the inner optimization arising in each step of Robust-AM, we adopt two computationally efficient methods. We provide a non-asymptotic convergence analysis of these practical algorithms for Robust-AM under the standard Gaussian measurement assumption. These algorithms, when suitably initialized, are guaranteed to converge linearly to the ground truth at an order-optimal sample complexity with high probability while the support of sparse noise is arbitrarily fixed and the sparsity level is no larger than \n<inline-formula><tex-math>$1/4$</tex-math></inline-formula>\n. Additionally, through comprehensive numerical experiments on synthetic and image datasets, we show that Robust-AM outperforms existing methods for robust phase retrieval offering comparable theoretical performance guarantees.","PeriodicalId":13330,"journal":{"name":"IEEE Transactions on Signal Processing","volume":"73 ","pages":"40-54"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust Phase Retrieval by Alternating Minimization\",\"authors\":\"Seonho Kim;Kiryung Lee\",\"doi\":\"10.1109/TSP.2024.3515008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a least absolute deviation (LAD) approach to the robust phase retrieval problem that aims to recover a signal from its absolute measurements corrupted with sparse noise. To solve the resulting non-convex optimization problem, we propose a robust alternating minimization (Robust-AM) derived as an unconstrained Gauss-Newton method. To solve the inner optimization arising in each step of Robust-AM, we adopt two computationally efficient methods. We provide a non-asymptotic convergence analysis of these practical algorithms for Robust-AM under the standard Gaussian measurement assumption. These algorithms, when suitably initialized, are guaranteed to converge linearly to the ground truth at an order-optimal sample complexity with high probability while the support of sparse noise is arbitrarily fixed and the sparsity level is no larger than \\n<inline-formula><tex-math>$1/4$</tex-math></inline-formula>\\n. Additionally, through comprehensive numerical experiments on synthetic and image datasets, we show that Robust-AM outperforms existing methods for robust phase retrieval offering comparable theoretical performance guarantees.\",\"PeriodicalId\":13330,\"journal\":{\"name\":\"IEEE Transactions on Signal Processing\",\"volume\":\"73 \",\"pages\":\"40-54\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10791809/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10791809/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Robust Phase Retrieval by Alternating Minimization
We consider a least absolute deviation (LAD) approach to the robust phase retrieval problem that aims to recover a signal from its absolute measurements corrupted with sparse noise. To solve the resulting non-convex optimization problem, we propose a robust alternating minimization (Robust-AM) derived as an unconstrained Gauss-Newton method. To solve the inner optimization arising in each step of Robust-AM, we adopt two computationally efficient methods. We provide a non-asymptotic convergence analysis of these practical algorithms for Robust-AM under the standard Gaussian measurement assumption. These algorithms, when suitably initialized, are guaranteed to converge linearly to the ground truth at an order-optimal sample complexity with high probability while the support of sparse noise is arbitrarily fixed and the sparsity level is no larger than
$1/4$
. Additionally, through comprehensive numerical experiments on synthetic and image datasets, we show that Robust-AM outperforms existing methods for robust phase retrieval offering comparable theoretical performance guarantees.
期刊介绍:
The IEEE Transactions on Signal Processing covers novel theory, algorithms, performance analyses and applications of techniques for the processing, understanding, learning, retrieval, mining, and extraction of information from signals. The term “signal” includes, among others, audio, video, speech, image, communication, geophysical, sonar, radar, medical and musical signals. Examples of topics of interest include, but are not limited to, information processing and the theory and application of filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals.