退行性脊柱和关节疾病中肥胖的细胞和分子机制

IF 14.3 1区 医学 Q1 CELL & TISSUE ENGINEERING Bone Research Pub Date : 2024-12-11 DOI:10.1038/s41413-024-00388-8
Qian Xiang, Zhenquan Wu, Yongzhao Zhao, Shuo Tian, Jialiang Lin, Longjie Wang, Shuai Jiang, Zhuoran Sun, Weishi Li
{"title":"退行性脊柱和关节疾病中肥胖的细胞和分子机制","authors":"Qian Xiang, Zhenquan Wu, Yongzhao Zhao, Shuo Tian, Jialiang Lin, Longjie Wang, Shuai Jiang, Zhuoran Sun, Weishi Li","doi":"10.1038/s41413-024-00388-8","DOIUrl":null,"url":null,"abstract":"<p>Degenerative spine and joint diseases, including intervertebral disc degeneration (IDD), ossification of the spinal ligaments (OSL), and osteoarthritis (OA), are common musculoskeletal diseases that cause pain or disability to the patients. However, the pathogenesis of these musculoskeletal disorders is complex and has not been elucidated clearly to date. As a matter of fact, the spine and joints are not independent of other organs and tissues. Recently, accumulating evidence demonstrates the association between obesity and degenerative musculoskeletal diseases. Obesity is a common metabolic disease characterized by excessive adipose tissue or abnormal adipose distribution in the body. Excessive mechanical stress is regarded as a critical risk factor for obesity-related pathology. Additionally, obesity-related factors, mainly including lipid metabolism disorder, dysregulated pro-inflammatory adipokines and cytokines, are reported as plausible links between obesity and various human diseases. Importantly, these obesity-related factors are deeply involved in the regulation of cell phenotypes and cell fates, extracellular matrix (ECM) metabolism, and inflammation in the pathophysiological processes of degenerative spine and joint diseases. In this study, we systematically discuss the potential cellular and molecular mechanisms underlying obesity in these degenerative musculoskeletal diseases, and hope to provide novel insights for developing targeted therapeutic strategies.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":"77 1","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cellular and molecular mechanisms underlying obesity in degenerative spine and joint diseases\",\"authors\":\"Qian Xiang, Zhenquan Wu, Yongzhao Zhao, Shuo Tian, Jialiang Lin, Longjie Wang, Shuai Jiang, Zhuoran Sun, Weishi Li\",\"doi\":\"10.1038/s41413-024-00388-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Degenerative spine and joint diseases, including intervertebral disc degeneration (IDD), ossification of the spinal ligaments (OSL), and osteoarthritis (OA), are common musculoskeletal diseases that cause pain or disability to the patients. However, the pathogenesis of these musculoskeletal disorders is complex and has not been elucidated clearly to date. As a matter of fact, the spine and joints are not independent of other organs and tissues. Recently, accumulating evidence demonstrates the association between obesity and degenerative musculoskeletal diseases. Obesity is a common metabolic disease characterized by excessive adipose tissue or abnormal adipose distribution in the body. Excessive mechanical stress is regarded as a critical risk factor for obesity-related pathology. Additionally, obesity-related factors, mainly including lipid metabolism disorder, dysregulated pro-inflammatory adipokines and cytokines, are reported as plausible links between obesity and various human diseases. Importantly, these obesity-related factors are deeply involved in the regulation of cell phenotypes and cell fates, extracellular matrix (ECM) metabolism, and inflammation in the pathophysiological processes of degenerative spine and joint diseases. In this study, we systematically discuss the potential cellular and molecular mechanisms underlying obesity in these degenerative musculoskeletal diseases, and hope to provide novel insights for developing targeted therapeutic strategies.</p>\",\"PeriodicalId\":9134,\"journal\":{\"name\":\"Bone Research\",\"volume\":\"77 1\",\"pages\":\"\"},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bone Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41413-024-00388-8\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bone Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41413-024-00388-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

退行性脊柱和关节疾病,包括椎间盘退变(IDD)、脊柱韧带骨化(OSL)和骨关节炎(OA),是常见的肌肉骨骼疾病,会导致患者疼痛或残疾。然而,这些肌肉骨骼疾病的发病机制是复杂的,迄今尚未明确阐明。事实上,脊柱和关节并不是独立于其他器官和组织的。最近,越来越多的证据表明肥胖与退行性肌肉骨骼疾病之间存在关联。肥胖是一种常见的代谢疾病,其特征是体内脂肪组织过多或脂肪分布异常。过度的机械应力被认为是肥胖相关病理的关键危险因素。此外,肥胖相关因素,主要包括脂质代谢紊乱,促炎脂肪因子和细胞因子失调,被报道为肥胖与各种人类疾病之间的合理联系。重要的是,这些肥胖相关因子在退行性脊柱和关节疾病的病理生理过程中深度参与细胞表型和细胞命运、细胞外基质(ECM)代谢和炎症的调节。在这项研究中,我们系统地讨论了这些退行性肌肉骨骼疾病中肥胖的潜在细胞和分子机制,并希望为开发靶向治疗策略提供新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cellular and molecular mechanisms underlying obesity in degenerative spine and joint diseases

Degenerative spine and joint diseases, including intervertebral disc degeneration (IDD), ossification of the spinal ligaments (OSL), and osteoarthritis (OA), are common musculoskeletal diseases that cause pain or disability to the patients. However, the pathogenesis of these musculoskeletal disorders is complex and has not been elucidated clearly to date. As a matter of fact, the spine and joints are not independent of other organs and tissues. Recently, accumulating evidence demonstrates the association between obesity and degenerative musculoskeletal diseases. Obesity is a common metabolic disease characterized by excessive adipose tissue or abnormal adipose distribution in the body. Excessive mechanical stress is regarded as a critical risk factor for obesity-related pathology. Additionally, obesity-related factors, mainly including lipid metabolism disorder, dysregulated pro-inflammatory adipokines and cytokines, are reported as plausible links between obesity and various human diseases. Importantly, these obesity-related factors are deeply involved in the regulation of cell phenotypes and cell fates, extracellular matrix (ECM) metabolism, and inflammation in the pathophysiological processes of degenerative spine and joint diseases. In this study, we systematically discuss the potential cellular and molecular mechanisms underlying obesity in these degenerative musculoskeletal diseases, and hope to provide novel insights for developing targeted therapeutic strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bone Research
Bone Research CELL & TISSUE ENGINEERING-
CiteScore
20.00
自引率
4.70%
发文量
289
审稿时长
20 weeks
期刊介绍: Established in 2013, Bone Research is a newly-founded English-language periodical that centers on the basic and clinical facets of bone biology, pathophysiology, and regeneration. It is dedicated to championing key findings emerging from both basic investigations and clinical research concerning bone-related topics. The journal's objective is to globally disseminate research in bone-related physiology, pathology, diseases, and treatment, contributing to the advancement of knowledge in this field.
期刊最新文献
Matrix stiffness regulates nucleus pulposus cell glycolysis by MRTF-A-dependent mechanotransduction Photothermal sensitive nanocomposite hydrogel for infectious bone defects Golgi-restored vesicular replenishment retards bone aging and empowers aging bone regeneration Nuclear farnesoid X receptor protects against bone loss by driving osteoblast differentiation through stabilizing RUNX2 Signaling pathway mechanisms of circadian clock gene Bmal1 regulating bone and cartilage metabolism: a review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1