整合生物信息学分析揭示ZNF248作为LIHC的潜在预后和免疫治疗生物标志物:机器学习和实验证据。

IF 3.6 3区 医学 Q2 ONCOLOGY American journal of cancer research Pub Date : 2024-11-15 eCollection Date: 2024-01-01 DOI:10.62347/CDUS5096
Lifang Weng, Zhicheng Cheng, Zhisong Qiu, Jin Shi, Libin Chen, Chunsheng He, Lijuan Wang, Feng Jin
{"title":"整合生物信息学分析揭示ZNF248作为LIHC的潜在预后和免疫治疗生物标志物:机器学习和实验证据。","authors":"Lifang Weng, Zhicheng Cheng, Zhisong Qiu, Jin Shi, Libin Chen, Chunsheng He, Lijuan Wang, Feng Jin","doi":"10.62347/CDUS5096","DOIUrl":null,"url":null,"abstract":"<p><p>Liver hepatocellular carcinoma (LIHC) is a major contributor to cancer-related mortality worldwide, posing substantial diagnostic and therapeutic challenges. Although zinc finger proteins (ZNFs) are known to play a role in LIHC, the specific function of ZNF248 remains poorly understood. In this study, we analyzed genomic and clinical data from The Cancer Genome Atlas (TCGA) to elucidate the role of ZNF248 through differential expression analysis, bioenrichment, immune response correlation, and drug sensitivity evaluation. Machine learning was employed to identify prognostic signatures derived from ZNF248, which were further validated using Receiver Operating Characteristic (ROC) analysis. Functional assays, including Western blot and rescue experiments, were performed to assess the impact of ZNF248 on the PI3K/AKT signaling pathway. Our results demonstrate that ZNF248 is significantly overexpressed in LIHC patients and is associated with poor prognosis. Bioenrichment analysis revealed activation of oncogenic pathways, and elevated ZNF248 expression correlated with increased immune cell infiltration and enhanced immune scores, thereby influencing both immunotherapy response and drug sensitivity. Functional assays further confirmed that ZNF248 promotes LIHC progression and invasion, while silencing ZNF248 inhibited the PI3K/AKT pathway - a phenomenon reversible by the AKT activator SC79. These findings suggest that ZNF248 contributes to LIHC progression through the PI3K/AKT pathway and may represent a novel immunotherapeutic target and prognostic biomarker for LIHC.</p>","PeriodicalId":7437,"journal":{"name":"American journal of cancer research","volume":"14 11","pages":"5230-5250"},"PeriodicalIF":3.6000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11626259/pdf/","citationCount":"0","resultStr":"{\"title\":\"Integration of bioinformatics analysis reveals ZNF248 as a potential prognostic and immunotherapeutic biomarker for LIHC: machine learning and experimental evidence.\",\"authors\":\"Lifang Weng, Zhicheng Cheng, Zhisong Qiu, Jin Shi, Libin Chen, Chunsheng He, Lijuan Wang, Feng Jin\",\"doi\":\"10.62347/CDUS5096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Liver hepatocellular carcinoma (LIHC) is a major contributor to cancer-related mortality worldwide, posing substantial diagnostic and therapeutic challenges. Although zinc finger proteins (ZNFs) are known to play a role in LIHC, the specific function of ZNF248 remains poorly understood. In this study, we analyzed genomic and clinical data from The Cancer Genome Atlas (TCGA) to elucidate the role of ZNF248 through differential expression analysis, bioenrichment, immune response correlation, and drug sensitivity evaluation. Machine learning was employed to identify prognostic signatures derived from ZNF248, which were further validated using Receiver Operating Characteristic (ROC) analysis. Functional assays, including Western blot and rescue experiments, were performed to assess the impact of ZNF248 on the PI3K/AKT signaling pathway. Our results demonstrate that ZNF248 is significantly overexpressed in LIHC patients and is associated with poor prognosis. Bioenrichment analysis revealed activation of oncogenic pathways, and elevated ZNF248 expression correlated with increased immune cell infiltration and enhanced immune scores, thereby influencing both immunotherapy response and drug sensitivity. Functional assays further confirmed that ZNF248 promotes LIHC progression and invasion, while silencing ZNF248 inhibited the PI3K/AKT pathway - a phenomenon reversible by the AKT activator SC79. These findings suggest that ZNF248 contributes to LIHC progression through the PI3K/AKT pathway and may represent a novel immunotherapeutic target and prognostic biomarker for LIHC.</p>\",\"PeriodicalId\":7437,\"journal\":{\"name\":\"American journal of cancer research\",\"volume\":\"14 11\",\"pages\":\"5230-5250\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11626259/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of cancer research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.62347/CDUS5096\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.62347/CDUS5096","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

肝细胞癌(LIHC)是全球癌症相关死亡的主要原因,对诊断和治疗提出了重大挑战。虽然锌指蛋白(ZNFs)已知在LIHC中发挥作用,但ZNF248的具体功能仍然知之甚少。在本研究中,我们分析了来自癌症基因组图谱(TCGA)的基因组和临床数据,通过差异表达分析、生物富集、免疫反应相关性和药物敏感性评估来阐明ZNF248的作用。使用机器学习来识别来自ZNF248的预后特征,并使用受试者工作特征(ROC)分析进一步验证。通过功能分析,包括Western blot和拯救实验,评估ZNF248对PI3K/AKT信号通路的影响。我们的研究结果表明,ZNF248在LIHC患者中显著过表达,并与不良预后相关。生物富集分析显示,致癌途径被激活,ZNF248表达升高与免疫细胞浸润增加和免疫评分提高相关,从而影响免疫治疗反应和药物敏感性。功能分析进一步证实,ZNF248促进LIHC进展和侵袭,而沉默ZNF248抑制PI3K/AKT通路,这一现象可被AKT激活剂SC79逆转。这些发现表明,ZNF248通过PI3K/AKT通路促进LIHC的进展,可能是LIHC的一种新的免疫治疗靶点和预后生物标志物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integration of bioinformatics analysis reveals ZNF248 as a potential prognostic and immunotherapeutic biomarker for LIHC: machine learning and experimental evidence.

Liver hepatocellular carcinoma (LIHC) is a major contributor to cancer-related mortality worldwide, posing substantial diagnostic and therapeutic challenges. Although zinc finger proteins (ZNFs) are known to play a role in LIHC, the specific function of ZNF248 remains poorly understood. In this study, we analyzed genomic and clinical data from The Cancer Genome Atlas (TCGA) to elucidate the role of ZNF248 through differential expression analysis, bioenrichment, immune response correlation, and drug sensitivity evaluation. Machine learning was employed to identify prognostic signatures derived from ZNF248, which were further validated using Receiver Operating Characteristic (ROC) analysis. Functional assays, including Western blot and rescue experiments, were performed to assess the impact of ZNF248 on the PI3K/AKT signaling pathway. Our results demonstrate that ZNF248 is significantly overexpressed in LIHC patients and is associated with poor prognosis. Bioenrichment analysis revealed activation of oncogenic pathways, and elevated ZNF248 expression correlated with increased immune cell infiltration and enhanced immune scores, thereby influencing both immunotherapy response and drug sensitivity. Functional assays further confirmed that ZNF248 promotes LIHC progression and invasion, while silencing ZNF248 inhibited the PI3K/AKT pathway - a phenomenon reversible by the AKT activator SC79. These findings suggest that ZNF248 contributes to LIHC progression through the PI3K/AKT pathway and may represent a novel immunotherapeutic target and prognostic biomarker for LIHC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
3.80%
发文量
263
期刊介绍: The American Journal of Cancer Research (AJCR) (ISSN 2156-6976), is an independent open access, online only journal to facilitate rapid dissemination of novel discoveries in basic science and treatment of cancer. It was founded by a group of scientists for cancer research and clinical academic oncologists from around the world, who are devoted to the promotion and advancement of our understanding of the cancer and its treatment. The scope of AJCR is intended to encompass that of multi-disciplinary researchers from any scientific discipline where the primary focus of the research is to increase and integrate knowledge about etiology and molecular mechanisms of carcinogenesis with the ultimate aim of advancing the cure and prevention of this increasingly devastating disease. To achieve these aims AJCR will publish review articles, original articles and new techniques in cancer research and therapy. It will also publish hypothesis, case reports and letter to the editor. Unlike most other open access online journals, AJCR will keep most of the traditional features of paper print that we are all familiar with, such as continuous volume, issue numbers, as well as continuous page numbers to retain our comfortable familiarity towards an academic journal.
期刊最新文献
miR-99b/let-7e/miR-125a cluster suppresses pancreatic cancer through regulation of NR6A1 [Retraction]. Comparing survival outcomes between neoadjuvant and adjuvant chemotherapy within hormone receptor-positive, human epidermal growth factor receptor 2-negative early breast cancer among young women (≤35): a retrospective cohort study based on SEER database and TJMUCH registry. Mechanism analysis and targeted therapy of IDH gene mutation in glioma. NFATC2 target gene signature correlates with immune checkpoint blockade resistance in melanoma. Retinoic acid receptor-β deletion in a model of early pancreatic ductal adenocarcinoma (PDAC) tumorigenesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1