Irfan Ahmad Mir, Hilal Ahmad Mir, Umar Mehraj, Mohd Younus Bhat, Manzoor Ahmad Mir, Tanveer Ali Dar, Mahboob-Ul Hussain
{"title":"氯喹通过丙酮酸脱氢酶激酶1的结构破坏使缺氧的结直肠癌细胞对ros介导的细胞死亡敏感。","authors":"Irfan Ahmad Mir, Hilal Ahmad Mir, Umar Mehraj, Mohd Younus Bhat, Manzoor Ahmad Mir, Tanveer Ali Dar, Mahboob-Ul Hussain","doi":"10.1016/j.freeradbiomed.2024.12.026","DOIUrl":null,"url":null,"abstract":"<p><p>Chloroquine (CQ), an autophagy antagonist, has been recently explored as a repurposable medicine for cancer; however the exact mechanism of its action is still not known. The present study investigated the effect of CQ on colorectal cancer cells to elucidate the underlying molecular mechanisms. We report for the first time that CQ suppresses hypoxia-induced growth and survival of HCT-116 cells by reducing glycolytic capacity and NAD<sup>+</sup> production through inhibition of PDK1. Furthermore, in silico and in vitro studies revealed that CQ induces structural alteration in the PDK1 protein, leading to its destabilization and promotes its enhanced degradation by proteases. This degradation is in turn inhibited by the MG-132 protease inhibitor. Moreover, CQ-induced suppression of PDK1 results in mitochondrial damage through excessive production of ROS, as reflected by the reduction in mitochondrial membrane potential, which in turn triggers apoptosis through PARP cleavage and Caspase activation. These findings advocate CQ as a promising repurposable chemotherapeutic for colorectal cancer and a novel inhibitor of PDK1.</p>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":" ","pages":"656-666"},"PeriodicalIF":7.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chloroquine sensitises hypoxic colorectal cancer cells to ROS-mediated cell death via structural disruption of pyruvate dehydrogenase kinase 1.\",\"authors\":\"Irfan Ahmad Mir, Hilal Ahmad Mir, Umar Mehraj, Mohd Younus Bhat, Manzoor Ahmad Mir, Tanveer Ali Dar, Mahboob-Ul Hussain\",\"doi\":\"10.1016/j.freeradbiomed.2024.12.026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chloroquine (CQ), an autophagy antagonist, has been recently explored as a repurposable medicine for cancer; however the exact mechanism of its action is still not known. The present study investigated the effect of CQ on colorectal cancer cells to elucidate the underlying molecular mechanisms. We report for the first time that CQ suppresses hypoxia-induced growth and survival of HCT-116 cells by reducing glycolytic capacity and NAD<sup>+</sup> production through inhibition of PDK1. Furthermore, in silico and in vitro studies revealed that CQ induces structural alteration in the PDK1 protein, leading to its destabilization and promotes its enhanced degradation by proteases. This degradation is in turn inhibited by the MG-132 protease inhibitor. Moreover, CQ-induced suppression of PDK1 results in mitochondrial damage through excessive production of ROS, as reflected by the reduction in mitochondrial membrane potential, which in turn triggers apoptosis through PARP cleavage and Caspase activation. These findings advocate CQ as a promising repurposable chemotherapeutic for colorectal cancer and a novel inhibitor of PDK1.</p>\",\"PeriodicalId\":12407,\"journal\":{\"name\":\"Free Radical Biology and Medicine\",\"volume\":\" \",\"pages\":\"656-666\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Free Radical Biology and Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.freeradbiomed.2024.12.026\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.freeradbiomed.2024.12.026","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Chloroquine sensitises hypoxic colorectal cancer cells to ROS-mediated cell death via structural disruption of pyruvate dehydrogenase kinase 1.
Chloroquine (CQ), an autophagy antagonist, has been recently explored as a repurposable medicine for cancer; however the exact mechanism of its action is still not known. The present study investigated the effect of CQ on colorectal cancer cells to elucidate the underlying molecular mechanisms. We report for the first time that CQ suppresses hypoxia-induced growth and survival of HCT-116 cells by reducing glycolytic capacity and NAD+ production through inhibition of PDK1. Furthermore, in silico and in vitro studies revealed that CQ induces structural alteration in the PDK1 protein, leading to its destabilization and promotes its enhanced degradation by proteases. This degradation is in turn inhibited by the MG-132 protease inhibitor. Moreover, CQ-induced suppression of PDK1 results in mitochondrial damage through excessive production of ROS, as reflected by the reduction in mitochondrial membrane potential, which in turn triggers apoptosis through PARP cleavage and Caspase activation. These findings advocate CQ as a promising repurposable chemotherapeutic for colorectal cancer and a novel inhibitor of PDK1.
期刊介绍:
Free Radical Biology and Medicine is a leading journal in the field of redox biology, which is the study of the role of reactive oxygen species (ROS) and other oxidizing agents in biological systems. The journal serves as a premier forum for publishing innovative and groundbreaking research that explores the redox biology of health and disease, covering a wide range of topics and disciplines. Free Radical Biology and Medicine also commissions Special Issues that highlight recent advances in both basic and clinical research, with a particular emphasis on the mechanisms underlying altered metabolism and redox signaling. These Special Issues aim to provide a focused platform for the latest research in the field, fostering collaboration and knowledge exchange among researchers and clinicians.