Jelena Borovac, Jayant Rai, Megan Valencia, Hang Li, John Georgiou, Graham L Collingridge, Keizo Takao, Kenichi Okamoto
{"title":"光遗传学升高海马齿状回突触后cGMP可增强LTP并改变小鼠行为。","authors":"Jelena Borovac, Jayant Rai, Megan Valencia, Hang Li, John Georgiou, Graham L Collingridge, Keizo Takao, Kenichi Okamoto","doi":"10.3389/fnmol.2024.1479360","DOIUrl":null,"url":null,"abstract":"<p><p>A major intracellular messenger implicated in synaptic plasticity and cognitive functions both in health and disease is cyclic GMP (cGMP). Utilizing a photoactivatable guanylyl cyclase (BlgC) actuator to increase cGMP in dentate granule neurons of the hippocampus by light, we studied the effects of spatiotemporal cGMP elevations in synaptic and cognitive functions. At medial perforant path to dentate gyrus (MPP-DG) synapses, we found enhanced long-term potentiation (LTP) of synaptic responses when postsynaptic cGMP was elevated during the induction period. Basal synaptic transmission and the paired-pulse ratio were unaffected, suggesting the cGMP effect on LTP was postsynaptic in origin. In behaving mice implanted with a fiber optic and wireless LED device, their performance following DG photoactivation (5-10 min) was studied in a variety of behavioral tasks. There were enhancements in reference memory and social behavior within tens of minutes following DG BlgC photoactivation, and with time (hours), an anxiogenic effect developed. Thus, postsynaptic cGMP elevations, specifically in the DG and specifically during conditions that evoke synaptic plasticity or during experience, are able to rapidly modify synaptic strength and behavioral responses, respectively. The optogenetics technology and new roles for cGMP in the DG may have applications in brain disorders that are impacted by dysregulated cGMP signaling, such as Alzheimer's disease.</p>","PeriodicalId":12630,"journal":{"name":"Frontiers in Molecular Neuroscience","volume":"17 ","pages":"1479360"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11629205/pdf/","citationCount":"0","resultStr":"{\"title\":\"Optogenetic elevation of postsynaptic cGMP in the hippocampal dentate gyrus enhances LTP and modifies mouse behaviors.\",\"authors\":\"Jelena Borovac, Jayant Rai, Megan Valencia, Hang Li, John Georgiou, Graham L Collingridge, Keizo Takao, Kenichi Okamoto\",\"doi\":\"10.3389/fnmol.2024.1479360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A major intracellular messenger implicated in synaptic plasticity and cognitive functions both in health and disease is cyclic GMP (cGMP). Utilizing a photoactivatable guanylyl cyclase (BlgC) actuator to increase cGMP in dentate granule neurons of the hippocampus by light, we studied the effects of spatiotemporal cGMP elevations in synaptic and cognitive functions. At medial perforant path to dentate gyrus (MPP-DG) synapses, we found enhanced long-term potentiation (LTP) of synaptic responses when postsynaptic cGMP was elevated during the induction period. Basal synaptic transmission and the paired-pulse ratio were unaffected, suggesting the cGMP effect on LTP was postsynaptic in origin. In behaving mice implanted with a fiber optic and wireless LED device, their performance following DG photoactivation (5-10 min) was studied in a variety of behavioral tasks. There were enhancements in reference memory and social behavior within tens of minutes following DG BlgC photoactivation, and with time (hours), an anxiogenic effect developed. Thus, postsynaptic cGMP elevations, specifically in the DG and specifically during conditions that evoke synaptic plasticity or during experience, are able to rapidly modify synaptic strength and behavioral responses, respectively. The optogenetics technology and new roles for cGMP in the DG may have applications in brain disorders that are impacted by dysregulated cGMP signaling, such as Alzheimer's disease.</p>\",\"PeriodicalId\":12630,\"journal\":{\"name\":\"Frontiers in Molecular Neuroscience\",\"volume\":\"17 \",\"pages\":\"1479360\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11629205/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Molecular Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fnmol.2024.1479360\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Molecular Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnmol.2024.1479360","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Optogenetic elevation of postsynaptic cGMP in the hippocampal dentate gyrus enhances LTP and modifies mouse behaviors.
A major intracellular messenger implicated in synaptic plasticity and cognitive functions both in health and disease is cyclic GMP (cGMP). Utilizing a photoactivatable guanylyl cyclase (BlgC) actuator to increase cGMP in dentate granule neurons of the hippocampus by light, we studied the effects of spatiotemporal cGMP elevations in synaptic and cognitive functions. At medial perforant path to dentate gyrus (MPP-DG) synapses, we found enhanced long-term potentiation (LTP) of synaptic responses when postsynaptic cGMP was elevated during the induction period. Basal synaptic transmission and the paired-pulse ratio were unaffected, suggesting the cGMP effect on LTP was postsynaptic in origin. In behaving mice implanted with a fiber optic and wireless LED device, their performance following DG photoactivation (5-10 min) was studied in a variety of behavioral tasks. There were enhancements in reference memory and social behavior within tens of minutes following DG BlgC photoactivation, and with time (hours), an anxiogenic effect developed. Thus, postsynaptic cGMP elevations, specifically in the DG and specifically during conditions that evoke synaptic plasticity or during experience, are able to rapidly modify synaptic strength and behavioral responses, respectively. The optogenetics technology and new roles for cGMP in the DG may have applications in brain disorders that are impacted by dysregulated cGMP signaling, such as Alzheimer's disease.
期刊介绍:
Frontiers in Molecular Neuroscience is a first-tier electronic journal devoted to identifying key molecules, as well as their functions and interactions, that underlie the structure, design and function of the brain across all levels. The scope of our journal encompasses synaptic and cellular proteins, coding and non-coding RNA, and molecular mechanisms regulating cellular and dendritic RNA translation. In recent years, a plethora of new cellular and synaptic players have been identified from reduced systems, such as neuronal cultures, but the relevance of these molecules in terms of cellular and synaptic function and plasticity in the living brain and its circuits has not been validated. The effects of spine growth and density observed using gene products identified from in vitro work are frequently not reproduced in vivo. Our journal is particularly interested in studies on genetically engineered model organisms (C. elegans, Drosophila, mouse), in which alterations in key molecules underlying cellular and synaptic function and plasticity produce defined anatomical, physiological and behavioral changes. In the mouse, genetic alterations limited to particular neural circuits (olfactory bulb, motor cortex, cortical layers, hippocampal subfields, cerebellum), preferably regulated in time and on demand, are of special interest, as they sidestep potential compensatory developmental effects.