ATML1和PDF2调控拟南芥幼苗角质层形成,保护植物体免受环境胁迫。

IF 2.7 3区 生物学 Q2 PLANT SCIENCES Journal of Plant Research Pub Date : 2024-12-10 DOI:10.1007/s10265-024-01604-6
Kenji Nagata, Ichiro Maekawa, Taku Takahashi, Mitsutomo Abe
{"title":"ATML1和PDF2调控拟南芥幼苗角质层形成,保护植物体免受环境胁迫。","authors":"Kenji Nagata, Ichiro Maekawa, Taku Takahashi, Mitsutomo Abe","doi":"10.1007/s10265-024-01604-6","DOIUrl":null,"url":null,"abstract":"<p><p>A sessile lifestyle compels plants to endure an array of environmental stressors in the location where they grow. To cope with environmental stresses, plants have developed specialized cell wall structures called cuticles at the interface between the plant and the environment. In Arabidopsis thaliana seedlings, cuticles cover and protect aerial organs and young roots. However, the precise assembly of the molecular machinery required for cuticle formation on the surface of distinct organs that exhibit entirely different functions and developmental contexts remains unknown. Here, we demonstrate that a paralogous gene pair, ARABIDOPSIS THALIANA MERISTEM LAYER1 (ATML1) and PROTODERMAL FACTOR2 (PDF2), regulates precise cuticle formation in Arabidopsis thaliana seedlings. We found that the expression of ATML1 and PDF2 spatially overlapped with cuticle deposition in Arabidopsis thaliana seedlings. Furthermore, the loss of ATML1 and PDF2 activity resulted in a significant downregulation of the expression of genes required for cuticle formation and compromised cuticle formation in different organs. Seedlings with impaired activities of ATML1 and PDF2 exhibited higher susceptibility to environmental stress. In particular, PDF2 plays a predominant role in tolerance to environmental stress rather than ATML1 in the roots. Collectively, our study provides new insights into the regulatory mechanisms of cuticle formation and the developmental strategies plants use to protect their bodies from environmental stresses.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ATML1 and PDF2 regulate cuticle formation and protect the plant body from environmental stresses in Arabidopsis thaliana seedlings.\",\"authors\":\"Kenji Nagata, Ichiro Maekawa, Taku Takahashi, Mitsutomo Abe\",\"doi\":\"10.1007/s10265-024-01604-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A sessile lifestyle compels plants to endure an array of environmental stressors in the location where they grow. To cope with environmental stresses, plants have developed specialized cell wall structures called cuticles at the interface between the plant and the environment. In Arabidopsis thaliana seedlings, cuticles cover and protect aerial organs and young roots. However, the precise assembly of the molecular machinery required for cuticle formation on the surface of distinct organs that exhibit entirely different functions and developmental contexts remains unknown. Here, we demonstrate that a paralogous gene pair, ARABIDOPSIS THALIANA MERISTEM LAYER1 (ATML1) and PROTODERMAL FACTOR2 (PDF2), regulates precise cuticle formation in Arabidopsis thaliana seedlings. We found that the expression of ATML1 and PDF2 spatially overlapped with cuticle deposition in Arabidopsis thaliana seedlings. Furthermore, the loss of ATML1 and PDF2 activity resulted in a significant downregulation of the expression of genes required for cuticle formation and compromised cuticle formation in different organs. Seedlings with impaired activities of ATML1 and PDF2 exhibited higher susceptibility to environmental stress. In particular, PDF2 plays a predominant role in tolerance to environmental stress rather than ATML1 in the roots. Collectively, our study provides new insights into the regulatory mechanisms of cuticle formation and the developmental strategies plants use to protect their bodies from environmental stresses.</p>\",\"PeriodicalId\":16813,\"journal\":{\"name\":\"Journal of Plant Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Plant Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10265-024-01604-6\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10265-024-01604-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

无根的生活方式迫使植物在其生长的地方忍受一系列的环境压力。为了应对环境的压力,植物在植物和环境的交界处形成了称为角质层的特殊细胞壁结构。在拟南芥幼苗中,角质层覆盖并保护着地上器官和幼根。然而,在具有完全不同功能和发育背景的不同器官表面形成角质层所需的分子机制的精确组装仍然未知。本研究表明,拟南芥分生系统层1 (ATML1)和原皮因子2 (PDF2)这对同源基因对调控了拟南芥幼苗角质层的形成。我们发现,在拟南芥幼苗中,ATML1和PDF2的表达在空间上与角质层沉积重叠。此外,ATML1和PDF2活性的缺失导致不同器官中角质层形成和受损角质层形成所需基因的表达显著下调。ATML1和PDF2活性受损的幼苗对环境胁迫的敏感性更高。特别是,PDF2在根系对环境胁迫的耐受性中起主导作用,而不是ATML1。总的来说,我们的研究为角质层形成的调节机制和植物用来保护其身体免受环境胁迫的发育策略提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ATML1 and PDF2 regulate cuticle formation and protect the plant body from environmental stresses in Arabidopsis thaliana seedlings.

A sessile lifestyle compels plants to endure an array of environmental stressors in the location where they grow. To cope with environmental stresses, plants have developed specialized cell wall structures called cuticles at the interface between the plant and the environment. In Arabidopsis thaliana seedlings, cuticles cover and protect aerial organs and young roots. However, the precise assembly of the molecular machinery required for cuticle formation on the surface of distinct organs that exhibit entirely different functions and developmental contexts remains unknown. Here, we demonstrate that a paralogous gene pair, ARABIDOPSIS THALIANA MERISTEM LAYER1 (ATML1) and PROTODERMAL FACTOR2 (PDF2), regulates precise cuticle formation in Arabidopsis thaliana seedlings. We found that the expression of ATML1 and PDF2 spatially overlapped with cuticle deposition in Arabidopsis thaliana seedlings. Furthermore, the loss of ATML1 and PDF2 activity resulted in a significant downregulation of the expression of genes required for cuticle formation and compromised cuticle formation in different organs. Seedlings with impaired activities of ATML1 and PDF2 exhibited higher susceptibility to environmental stress. In particular, PDF2 plays a predominant role in tolerance to environmental stress rather than ATML1 in the roots. Collectively, our study provides new insights into the regulatory mechanisms of cuticle formation and the developmental strategies plants use to protect their bodies from environmental stresses.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Plant Research
Journal of Plant Research 生物-植物科学
CiteScore
5.40
自引率
3.60%
发文量
59
审稿时长
1 months
期刊介绍: The Journal of Plant Research is an international publication that gathers and disseminates fundamental knowledge in all areas of plant sciences. Coverage extends to every corner of the field, including such topics as evolutionary biology, phylogeography, phylogeny, taxonomy, genetics, ecology, morphology, physiology, developmental biology, cell biology, molecular biology, biochemistry, biophysics, bioinformatics, and systems biology. The journal presents full-length research articles that describe original and fundamental findings of significance that contribute to understanding of plants, as well as shorter communications reporting significant new findings, technical notes on new methodology, and invited review articles.
期刊最新文献
Pressure-volume curves of fine roots reveal intraspecific variation across different elevations in a subalpine forest. The variation of summer heat resistance was associated with leaf transpiration rate in relatively large-leaf Rhododendron plants in southwest China. Differences in plant responses to nitrogen addition between the central and edge populations of invasive Galinsoga quadriradiata in China. Pregnane derivatives in wheat (Triticum aestivum) and their potential role in generative development. Integrated metabolomic and transcriptomic strategies to reveal adaptive mechanisms in barley plant during germination stage under waterlogging stress.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1