Ruijie Ma, Hongxiang Li, Top Archie Dela Peña, Heng Wang, Cenqi Yan, Pei Cheng, Jiaying Wu, Gang Li
{"title":"绿色溶剂处理全聚合物太阳能电池纤维状形态形成的原位研究。","authors":"Ruijie Ma, Hongxiang Li, Top Archie Dela Peña, Heng Wang, Cenqi Yan, Pei Cheng, Jiaying Wu, Gang Li","doi":"10.1093/nsr/nwae384","DOIUrl":null,"url":null,"abstract":"<p><p>Solid additive engineering has been intensively explored on morphology tuning for highly efficient all-polymer solar cells (all-PSCs), a promising photovoltaic technology towards multi-scenario application. Although the nano-fibrillar network of the active layer induced by additive treatment is confirmed as the key factor for power conversion efficiency (PCE) of all-PSCs, its formation mechanism is not clearly revealed, for lack of precise and convincing real-time observation of crystallization and phase separation during the liquid-to-solid transition process of spin-coating. Herein we report an <i>in-situ</i> grazing incidence wide-angle/small-angle X-ray scattering (GIWAXS/GISAXS) screening that reveals the fact that naphthalene derived solid additives can suppress the aggregation of the polymer acceptor (PY-IT) at the beginning stage of spin coating, which provides sufficient time and space for the polymer donor (PM6) to form the fibril structure. Moreover, guided by this knowledge, a ternary all-polymer system is proposed, which achieves cutting-edge level PCEs for both small-area (0.04 cm<sup>2</sup>) (also decent operational stability) and large-area (1 cm<sup>2</sup>) devices.</p>","PeriodicalId":18842,"journal":{"name":"National Science Review","volume":"11 12","pages":"nwae384"},"PeriodicalIF":16.3000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11629699/pdf/","citationCount":"0","resultStr":"{\"title\":\"<i>In-situ</i> understanding on the formation of fibrillar morphology in green solvent processed all-polymer solar cells.\",\"authors\":\"Ruijie Ma, Hongxiang Li, Top Archie Dela Peña, Heng Wang, Cenqi Yan, Pei Cheng, Jiaying Wu, Gang Li\",\"doi\":\"10.1093/nsr/nwae384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Solid additive engineering has been intensively explored on morphology tuning for highly efficient all-polymer solar cells (all-PSCs), a promising photovoltaic technology towards multi-scenario application. Although the nano-fibrillar network of the active layer induced by additive treatment is confirmed as the key factor for power conversion efficiency (PCE) of all-PSCs, its formation mechanism is not clearly revealed, for lack of precise and convincing real-time observation of crystallization and phase separation during the liquid-to-solid transition process of spin-coating. Herein we report an <i>in-situ</i> grazing incidence wide-angle/small-angle X-ray scattering (GIWAXS/GISAXS) screening that reveals the fact that naphthalene derived solid additives can suppress the aggregation of the polymer acceptor (PY-IT) at the beginning stage of spin coating, which provides sufficient time and space for the polymer donor (PM6) to form the fibril structure. Moreover, guided by this knowledge, a ternary all-polymer system is proposed, which achieves cutting-edge level PCEs for both small-area (0.04 cm<sup>2</sup>) (also decent operational stability) and large-area (1 cm<sup>2</sup>) devices.</p>\",\"PeriodicalId\":18842,\"journal\":{\"name\":\"National Science Review\",\"volume\":\"11 12\",\"pages\":\"nwae384\"},\"PeriodicalIF\":16.3000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11629699/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"National Science Review\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1093/nsr/nwae384\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"National Science Review","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1093/nsr/nwae384","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
In-situ understanding on the formation of fibrillar morphology in green solvent processed all-polymer solar cells.
Solid additive engineering has been intensively explored on morphology tuning for highly efficient all-polymer solar cells (all-PSCs), a promising photovoltaic technology towards multi-scenario application. Although the nano-fibrillar network of the active layer induced by additive treatment is confirmed as the key factor for power conversion efficiency (PCE) of all-PSCs, its formation mechanism is not clearly revealed, for lack of precise and convincing real-time observation of crystallization and phase separation during the liquid-to-solid transition process of spin-coating. Herein we report an in-situ grazing incidence wide-angle/small-angle X-ray scattering (GIWAXS/GISAXS) screening that reveals the fact that naphthalene derived solid additives can suppress the aggregation of the polymer acceptor (PY-IT) at the beginning stage of spin coating, which provides sufficient time and space for the polymer donor (PM6) to form the fibril structure. Moreover, guided by this knowledge, a ternary all-polymer system is proposed, which achieves cutting-edge level PCEs for both small-area (0.04 cm2) (also decent operational stability) and large-area (1 cm2) devices.
期刊介绍:
National Science Review (NSR; ISSN abbreviation: Natl. Sci. Rev.) is an English-language peer-reviewed multidisciplinary open-access scientific journal published by Oxford University Press under the auspices of the Chinese Academy of Sciences.According to Journal Citation Reports, its 2021 impact factor was 23.178.
National Science Review publishes both review articles and perspectives as well as original research in the form of brief communications and research articles.