Anne Marmagne, Fabien Chardon, Céline Masclaux-Daubresse
{"title":"组织特异性救援策略揭示了叶片和种子自噬在资源分配中的局部作用。","authors":"Anne Marmagne, Fabien Chardon, Céline Masclaux-Daubresse","doi":"10.1093/plphys/kiae647","DOIUrl":null,"url":null,"abstract":"<p><p>Autophagy is a vesicular mechanism that plays a fundamental role in nitrogen remobilization from senescing leaves to seeds. The Arabidopsis (Arabidopsis thaliana) autophagy (atg) mutants exhibit early senescence, reduced biomass, and low seed yield. The atg seeds also exhibit major changes in N and C concentrations. During plant development, autophagy genes are expressed in the source leaves and in the sink seeds during maturation. We thus addressed the question of whether the seed composition defects in atg mutants are caused by defective N remobilization from source leaves or whether they are due to the absence of autophagy in seeds during maturation. To answer this question, we restored autophagy activity in the atg5 mutant by expressing the wild-type (WT) ATG5 allele specifically in source leaves using the senescence-associated gene 12 (SAG12) promoter or specifically in seeds using the Glycinin-1 promoter, or in both organs using both constructs. In atg5, N remobilization from the rosettes to seeds was almost completely reestablished when transformed with the pSAG12::ATG5 construct. However, transformation with the pSAG12::ATG5 construct only partially restored seed composition. In contrast, seed N and C composition was largely restored by transformation with the pGly::ATG5 construct, even though the early leaf senescence phenotype was maintained in the atg5 background. Cotransformation with pSAG12::ATG5 and pGly::ATG5 completely restored the WT remobilization and seed composition phenotypes. Our results highlight the essential role of autophagy in leaves for nitrogen supply and in seeds for the establishment of carbon and nitrogen reserves.</p>","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":" ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11663706/pdf/","citationCount":"0","resultStr":"{\"title\":\"A tissue-specific rescue strategy reveals the local roles of autophagy in leaves and seeds for resource allocation.\",\"authors\":\"Anne Marmagne, Fabien Chardon, Céline Masclaux-Daubresse\",\"doi\":\"10.1093/plphys/kiae647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Autophagy is a vesicular mechanism that plays a fundamental role in nitrogen remobilization from senescing leaves to seeds. The Arabidopsis (Arabidopsis thaliana) autophagy (atg) mutants exhibit early senescence, reduced biomass, and low seed yield. The atg seeds also exhibit major changes in N and C concentrations. During plant development, autophagy genes are expressed in the source leaves and in the sink seeds during maturation. We thus addressed the question of whether the seed composition defects in atg mutants are caused by defective N remobilization from source leaves or whether they are due to the absence of autophagy in seeds during maturation. To answer this question, we restored autophagy activity in the atg5 mutant by expressing the wild-type (WT) ATG5 allele specifically in source leaves using the senescence-associated gene 12 (SAG12) promoter or specifically in seeds using the Glycinin-1 promoter, or in both organs using both constructs. In atg5, N remobilization from the rosettes to seeds was almost completely reestablished when transformed with the pSAG12::ATG5 construct. However, transformation with the pSAG12::ATG5 construct only partially restored seed composition. In contrast, seed N and C composition was largely restored by transformation with the pGly::ATG5 construct, even though the early leaf senescence phenotype was maintained in the atg5 background. Cotransformation with pSAG12::ATG5 and pGly::ATG5 completely restored the WT remobilization and seed composition phenotypes. Our results highlight the essential role of autophagy in leaves for nitrogen supply and in seeds for the establishment of carbon and nitrogen reserves.</p>\",\"PeriodicalId\":20101,\"journal\":{\"name\":\"Plant Physiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11663706/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/plphys/kiae647\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiae647","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
A tissue-specific rescue strategy reveals the local roles of autophagy in leaves and seeds for resource allocation.
Autophagy is a vesicular mechanism that plays a fundamental role in nitrogen remobilization from senescing leaves to seeds. The Arabidopsis (Arabidopsis thaliana) autophagy (atg) mutants exhibit early senescence, reduced biomass, and low seed yield. The atg seeds also exhibit major changes in N and C concentrations. During plant development, autophagy genes are expressed in the source leaves and in the sink seeds during maturation. We thus addressed the question of whether the seed composition defects in atg mutants are caused by defective N remobilization from source leaves or whether they are due to the absence of autophagy in seeds during maturation. To answer this question, we restored autophagy activity in the atg5 mutant by expressing the wild-type (WT) ATG5 allele specifically in source leaves using the senescence-associated gene 12 (SAG12) promoter or specifically in seeds using the Glycinin-1 promoter, or in both organs using both constructs. In atg5, N remobilization from the rosettes to seeds was almost completely reestablished when transformed with the pSAG12::ATG5 construct. However, transformation with the pSAG12::ATG5 construct only partially restored seed composition. In contrast, seed N and C composition was largely restored by transformation with the pGly::ATG5 construct, even though the early leaf senescence phenotype was maintained in the atg5 background. Cotransformation with pSAG12::ATG5 and pGly::ATG5 completely restored the WT remobilization and seed composition phenotypes. Our results highlight the essential role of autophagy in leaves for nitrogen supply and in seeds for the establishment of carbon and nitrogen reserves.
期刊介绍:
Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research.
As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.