brahma相关的SWI/SNF染色质重塑复合体控制拟南芥种子质量和生理。

IF 6.5 1区 生物学 Q1 PLANT SCIENCES Plant Physiology Pub Date : 2024-12-24 DOI:10.1093/plphys/kiae642
Magdalena Wrona, Julia Zinsmeister, Michal Krzyszton, Claire Villette, Julie Zumsteg, Pierre Mercier, Martine Neveu, Sebastian P Sacharowski, Rafał Archacki, Boris Collet, Julia Buitink, Hubert Schaller, Szymon Swiezewski, Ruslan Yatusevich
{"title":"brahma相关的SWI/SNF染色质重塑复合体控制拟南芥种子质量和生理。","authors":"Magdalena Wrona, Julia Zinsmeister, Michal Krzyszton, Claire Villette, Julie Zumsteg, Pierre Mercier, Martine Neveu, Sebastian P Sacharowski, Rafał Archacki, Boris Collet, Julia Buitink, Hubert Schaller, Szymon Swiezewski, Ruslan Yatusevich","doi":"10.1093/plphys/kiae642","DOIUrl":null,"url":null,"abstract":"<p><p>The SWI/SNF (SWItch/Sucrose Non-Fermentable) chromatin remodeling complex is involved in various aspects of plant development and stress responses. Here, we investigated the role of BRM (BRAHMA), a core catalytic subunit of the SWI/SNF complex, in Arabidopsis thaliana seed biology. brm-3 seeds exhibited enlarged size, reduced yield, increased longevity, and enhanced secondary dormancy, but did not show changes in primary dormancy or salt tolerance. Some of these phenotypes depended on the expression of DOG1, a key regulator of seed dormancy, as they were restored in the brm-3 dog1-4 double mutant. Transcriptomic and metabolomic analyses revealed that BRM and DOG1 synergistically modulate the expression of numerous genes. Some of the changes observed in the brm-3 mutant, including increased glutathione levels, depended on a functional DOG1. We demonstrated that the BRM-containing chromatin remodeling complex directly controls secondary dormancy through DOG1 by binding and remodeling its 3' region, where the promoter of the long noncoding RNA asDOG1 is located. Our results suggest that BRM and DOG1 cooperate to control seed physiological properties and that BRM regulates DOG1 expression through asDOG1. This study reveals chromatin remodeling at the DOG1 locus as a molecular mechanism controlling the interplay between seed viability and dormancy.</p>","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":" ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11668257/pdf/","citationCount":"0","resultStr":"{\"title\":\"The BRAHMA-associated SWI/SNF chromatin remodeling complex controls Arabidopsis seed quality and physiology.\",\"authors\":\"Magdalena Wrona, Julia Zinsmeister, Michal Krzyszton, Claire Villette, Julie Zumsteg, Pierre Mercier, Martine Neveu, Sebastian P Sacharowski, Rafał Archacki, Boris Collet, Julia Buitink, Hubert Schaller, Szymon Swiezewski, Ruslan Yatusevich\",\"doi\":\"10.1093/plphys/kiae642\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The SWI/SNF (SWItch/Sucrose Non-Fermentable) chromatin remodeling complex is involved in various aspects of plant development and stress responses. Here, we investigated the role of BRM (BRAHMA), a core catalytic subunit of the SWI/SNF complex, in Arabidopsis thaliana seed biology. brm-3 seeds exhibited enlarged size, reduced yield, increased longevity, and enhanced secondary dormancy, but did not show changes in primary dormancy or salt tolerance. Some of these phenotypes depended on the expression of DOG1, a key regulator of seed dormancy, as they were restored in the brm-3 dog1-4 double mutant. Transcriptomic and metabolomic analyses revealed that BRM and DOG1 synergistically modulate the expression of numerous genes. Some of the changes observed in the brm-3 mutant, including increased glutathione levels, depended on a functional DOG1. We demonstrated that the BRM-containing chromatin remodeling complex directly controls secondary dormancy through DOG1 by binding and remodeling its 3' region, where the promoter of the long noncoding RNA asDOG1 is located. Our results suggest that BRM and DOG1 cooperate to control seed physiological properties and that BRM regulates DOG1 expression through asDOG1. This study reveals chromatin remodeling at the DOG1 locus as a molecular mechanism controlling the interplay between seed viability and dormancy.</p>\",\"PeriodicalId\":20101,\"journal\":{\"name\":\"Plant Physiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11668257/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/plphys/kiae642\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiae642","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

SWI/SNF(开关/蔗糖不可发酵)染色质重塑复合体参与植物发育和胁迫反应的各个方面。本文研究了SWI/SNF复合物的核心催化亚基BRM (BRAHMA)在拟南芥种子生物学中的作用。Brm-3种子的大小增大,产量降低,寿命延长,次生休眠增强,但初级休眠和耐盐性没有变化。其中一些表型依赖于DOG1的表达,DOG1是种子休眠的关键调节因子,在brm-3 DOG1 -4双突变体中恢复。转录组学和代谢组学分析显示,BRM和DOG1协同调节许多基因的表达。在brm-3突变体中观察到的一些变化,包括增加的谷胱甘肽水平,依赖于功能性的DOG1。我们证明了含有brm的染色质重塑复合体通过结合和重塑其3'区直接控制DOG1的继发休眠,而长链非编码RNA作为DOG1的启动子位于该区域。结果表明,BRM和DOG1共同调控种子生理特性,BRM通过asDOG1调控DOG1的表达。该研究揭示了DOG1位点的染色质重塑是控制种子活力和休眠相互作用的分子机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The BRAHMA-associated SWI/SNF chromatin remodeling complex controls Arabidopsis seed quality and physiology.

The SWI/SNF (SWItch/Sucrose Non-Fermentable) chromatin remodeling complex is involved in various aspects of plant development and stress responses. Here, we investigated the role of BRM (BRAHMA), a core catalytic subunit of the SWI/SNF complex, in Arabidopsis thaliana seed biology. brm-3 seeds exhibited enlarged size, reduced yield, increased longevity, and enhanced secondary dormancy, but did not show changes in primary dormancy or salt tolerance. Some of these phenotypes depended on the expression of DOG1, a key regulator of seed dormancy, as they were restored in the brm-3 dog1-4 double mutant. Transcriptomic and metabolomic analyses revealed that BRM and DOG1 synergistically modulate the expression of numerous genes. Some of the changes observed in the brm-3 mutant, including increased glutathione levels, depended on a functional DOG1. We demonstrated that the BRM-containing chromatin remodeling complex directly controls secondary dormancy through DOG1 by binding and remodeling its 3' region, where the promoter of the long noncoding RNA asDOG1 is located. Our results suggest that BRM and DOG1 cooperate to control seed physiological properties and that BRM regulates DOG1 expression through asDOG1. This study reveals chromatin remodeling at the DOG1 locus as a molecular mechanism controlling the interplay between seed viability and dormancy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Physiology
Plant Physiology 生物-植物科学
CiteScore
12.20
自引率
5.40%
发文量
535
审稿时长
2.3 months
期刊介绍: Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research. As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.
期刊最新文献
Modifying the TL1-BINDING FACTOR upstream open reading frame coordinates plant growth and defense in rice ATP-CITRATE LYASEB1 supplies materials for sporopollenin biosynthesis and microspore development in Arabidopsis. Enhanced storage lipid biosynthesis promotes somatic embryogenesis in citrus. At5g63290 does not encode coproporphyrinogen III oxidase Surviving Floods: Escape and Quiescence Strategies of Rice Coping with Submergence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1