壳聚糖:微球配方及肠道菌群重塑中缓释益生元活性的表征。

Sunny Kumar, Zeel Bhatia, Sriram Seshadri
{"title":"壳聚糖:微球配方及肠道菌群重塑中缓释益生元活性的表征。","authors":"Sunny Kumar, Zeel Bhatia, Sriram Seshadri","doi":"10.2174/0126673878305913241122114556","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Chitosan is a biocompatible, mucoadhesive, and biodegradable polymer widely used for various purposes due to its biological activity and safety. The current study aimed to formulate Chitosan microspheres and conduct an in-vitro evaluation of their cytotoxicity. The concept is focused on targeted gut delivery and biological activities in gut microbiota remodelling.</p><p><strong>Methods: </strong>The formulations were comprehensively characterized, encompassing SEM for surface morphology, particle size analysis, and FT-IR for structural understanding. Along with biological activity and cytotoxicity studies, dissolution efficiency was considered to understand release kinetics potential and accelerated stability studies to predict formulation shelf-life.</p><p><strong>Results: </strong>The formulation showed smooth spherical surface morphology with an average size range of 30.0 ± 5.0 μm and a charge of 20.35 ± 0.35 mV. Further, functional and thermal properties were determined using FT-IR and DSC, respectively. The microspheres showed a potent prebiotic potential in gut flora isolated and processed from a faecal sample of Wistar rats with prolonged release characteristics in the dissolution study. A cytotoxicity study using rat intestinal epithelial cells (IEC6) indicated that 40 mg /kg of microspheres could be considered an optimal dose for an in-vivo study.</p><p><strong>Conclusion: </strong>The formulation demonstrated promising pharmaceutical applicability due to its potential prebiotic nature and slow release into the gut environment. After a thorough in vivo study, the microspheres can be broadly used to restore gut dysbiosis due to their potential prebiotic activities in various diseases and disorders, including but not limited to obesity, type-2 diabetes, cardiometabolic disease, and non-alcoholic fatty liver disease.</p>","PeriodicalId":94352,"journal":{"name":"Recent advances in drug delivery and formulation","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chitosan: Microsphere Formulation and Characterization for Slow - release Prebiotic Activities in Gut Microbiota Remodelling.\",\"authors\":\"Sunny Kumar, Zeel Bhatia, Sriram Seshadri\",\"doi\":\"10.2174/0126673878305913241122114556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Chitosan is a biocompatible, mucoadhesive, and biodegradable polymer widely used for various purposes due to its biological activity and safety. The current study aimed to formulate Chitosan microspheres and conduct an in-vitro evaluation of their cytotoxicity. The concept is focused on targeted gut delivery and biological activities in gut microbiota remodelling.</p><p><strong>Methods: </strong>The formulations were comprehensively characterized, encompassing SEM for surface morphology, particle size analysis, and FT-IR for structural understanding. Along with biological activity and cytotoxicity studies, dissolution efficiency was considered to understand release kinetics potential and accelerated stability studies to predict formulation shelf-life.</p><p><strong>Results: </strong>The formulation showed smooth spherical surface morphology with an average size range of 30.0 ± 5.0 μm and a charge of 20.35 ± 0.35 mV. Further, functional and thermal properties were determined using FT-IR and DSC, respectively. The microspheres showed a potent prebiotic potential in gut flora isolated and processed from a faecal sample of Wistar rats with prolonged release characteristics in the dissolution study. A cytotoxicity study using rat intestinal epithelial cells (IEC6) indicated that 40 mg /kg of microspheres could be considered an optimal dose for an in-vivo study.</p><p><strong>Conclusion: </strong>The formulation demonstrated promising pharmaceutical applicability due to its potential prebiotic nature and slow release into the gut environment. After a thorough in vivo study, the microspheres can be broadly used to restore gut dysbiosis due to their potential prebiotic activities in various diseases and disorders, including but not limited to obesity, type-2 diabetes, cardiometabolic disease, and non-alcoholic fatty liver disease.</p>\",\"PeriodicalId\":94352,\"journal\":{\"name\":\"Recent advances in drug delivery and formulation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent advances in drug delivery and formulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/0126673878305913241122114556\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent advances in drug delivery and formulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0126673878305913241122114556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

壳聚糖是一种具有生物相容性、黏附性和可生物降解性的高分子材料,因其具有生物活性和安全性而广泛应用于各种用途。本研究旨在制备壳聚糖微球,并对其细胞毒性进行体外评价。该概念侧重于肠道微生物群重塑中的靶向肠道递送和生物活性。方法:对配方进行了全面的表征,包括表面形貌的SEM,粒度分析和结构理解的FT-IR。随着生物活性和细胞毒性的研究,溶解效率被认为是了解释放动力学潜力和加速稳定性研究,以预测配方的货架期。结果:该配方具有光滑的球形形貌,平均粒径范围为30.0±5.0 μm,电荷量为20.35±0.35 mV。此外,用FT-IR和DSC分别测定了其功能和热性能。在溶出性研究中,从Wistar大鼠粪便样品中分离和处理的微球显示出强大的益生元潜力,具有缓释特性。一项使用大鼠肠上皮细胞(IEC6)的细胞毒性研究表明,40 mg /kg的微球可以被认为是体内研究的最佳剂量。结论:该制剂具有潜在的益生元性质,且在肠道环境中释放缓慢,具有良好的药学应用前景。经过深入的体内研究,由于微球在多种疾病和紊乱中具有潜在的益生元活性,包括但不限于肥胖、2型糖尿病、心脏代谢疾病和非酒精性脂肪性肝病,因此可以广泛用于恢复肠道生态失调。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Chitosan: Microsphere Formulation and Characterization for Slow - release Prebiotic Activities in Gut Microbiota Remodelling.

Introduction: Chitosan is a biocompatible, mucoadhesive, and biodegradable polymer widely used for various purposes due to its biological activity and safety. The current study aimed to formulate Chitosan microspheres and conduct an in-vitro evaluation of their cytotoxicity. The concept is focused on targeted gut delivery and biological activities in gut microbiota remodelling.

Methods: The formulations were comprehensively characterized, encompassing SEM for surface morphology, particle size analysis, and FT-IR for structural understanding. Along with biological activity and cytotoxicity studies, dissolution efficiency was considered to understand release kinetics potential and accelerated stability studies to predict formulation shelf-life.

Results: The formulation showed smooth spherical surface morphology with an average size range of 30.0 ± 5.0 μm and a charge of 20.35 ± 0.35 mV. Further, functional and thermal properties were determined using FT-IR and DSC, respectively. The microspheres showed a potent prebiotic potential in gut flora isolated and processed from a faecal sample of Wistar rats with prolonged release characteristics in the dissolution study. A cytotoxicity study using rat intestinal epithelial cells (IEC6) indicated that 40 mg /kg of microspheres could be considered an optimal dose for an in-vivo study.

Conclusion: The formulation demonstrated promising pharmaceutical applicability due to its potential prebiotic nature and slow release into the gut environment. After a thorough in vivo study, the microspheres can be broadly used to restore gut dysbiosis due to their potential prebiotic activities in various diseases and disorders, including but not limited to obesity, type-2 diabetes, cardiometabolic disease, and non-alcoholic fatty liver disease.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
0
期刊最新文献
Scientific and Technological Prospecting on Polymeric Particles Containing Extracellular Matrix Peptides for the Treatment of Duchenne Muscular Dystrophy. Exosomes from Different Sources in Promoting Wound Healing. Harnessing Polyphenols and Novel Delivery Strategies for Effective Treatment of Breast Cancer. Precision Oncology: Advances in Drug Delivery and Imaging. A Comprehensive Review of Nanostructured Lipid Carriers: Innovations and Applications in Breast Cancer Treatment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1