Zhenchao Ling, Aihu Jia, Yunlong Fu, David T Branson, Zhibin Song, Jiayao Ma, Jian S Dai, Rongjie Kang
{"title":"基于流体振荡的柔性运动与抓取气动驱动。","authors":"Zhenchao Ling, Aihu Jia, Yunlong Fu, David T Branson, Zhibin Song, Jiayao Ma, Jian S Dai, Rongjie Kang","doi":"10.1089/soro.2023.0073","DOIUrl":null,"url":null,"abstract":"<p><p>Most pneumatic actuators used in robotics are controlled by valves that contain moving parts (e.g., spool or rotor) and electronics to change the direction or pressure of the air flow. Thus, the dynamic bandwidth and robustness of the system are limited by these elements. This article presents an oscillation-based pneumatic actuation method to remove the moving parts and electronics from the valve. The obtained bistable load-switched (LoS) oscillator utilizes two output attachment walls to generate the Coanda effect and internal flow field to control the pressure in different output channels. The bistable LoS oscillator is implemented on a soft fish and runner, achieving locomotion speed up to 1.68 and 1.97 BL/s (body length per second), respectively, which are faster than existing counterparts. Furthermore, a single-output LoS oscillator is demonstrated by slightly modifying the bistable one. It enables the development of a soft runner with higher load capacity, as well as a relief valve used for pressure regulation in soft robotic grippers. The presented actuation methods can be potentially extended to a variety of situations that require compact size, light weight, high dynamics, and robustness.</p>","PeriodicalId":94210,"journal":{"name":"Soft robotics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fluidic Oscillation-Based Pneumatic Actuation for Soft Locomotion and Grasping.\",\"authors\":\"Zhenchao Ling, Aihu Jia, Yunlong Fu, David T Branson, Zhibin Song, Jiayao Ma, Jian S Dai, Rongjie Kang\",\"doi\":\"10.1089/soro.2023.0073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Most pneumatic actuators used in robotics are controlled by valves that contain moving parts (e.g., spool or rotor) and electronics to change the direction or pressure of the air flow. Thus, the dynamic bandwidth and robustness of the system are limited by these elements. This article presents an oscillation-based pneumatic actuation method to remove the moving parts and electronics from the valve. The obtained bistable load-switched (LoS) oscillator utilizes two output attachment walls to generate the Coanda effect and internal flow field to control the pressure in different output channels. The bistable LoS oscillator is implemented on a soft fish and runner, achieving locomotion speed up to 1.68 and 1.97 BL/s (body length per second), respectively, which are faster than existing counterparts. Furthermore, a single-output LoS oscillator is demonstrated by slightly modifying the bistable one. It enables the development of a soft runner with higher load capacity, as well as a relief valve used for pressure regulation in soft robotic grippers. The presented actuation methods can be potentially extended to a variety of situations that require compact size, light weight, high dynamics, and robustness.</p>\",\"PeriodicalId\":94210,\"journal\":{\"name\":\"Soft robotics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soft robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1089/soro.2023.0073\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/soro.2023.0073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fluidic Oscillation-Based Pneumatic Actuation for Soft Locomotion and Grasping.
Most pneumatic actuators used in robotics are controlled by valves that contain moving parts (e.g., spool or rotor) and electronics to change the direction or pressure of the air flow. Thus, the dynamic bandwidth and robustness of the system are limited by these elements. This article presents an oscillation-based pneumatic actuation method to remove the moving parts and electronics from the valve. The obtained bistable load-switched (LoS) oscillator utilizes two output attachment walls to generate the Coanda effect and internal flow field to control the pressure in different output channels. The bistable LoS oscillator is implemented on a soft fish and runner, achieving locomotion speed up to 1.68 and 1.97 BL/s (body length per second), respectively, which are faster than existing counterparts. Furthermore, a single-output LoS oscillator is demonstrated by slightly modifying the bistable one. It enables the development of a soft runner with higher load capacity, as well as a relief valve used for pressure regulation in soft robotic grippers. The presented actuation methods can be potentially extended to a variety of situations that require compact size, light weight, high dynamics, and robustness.