海洋人群:基于船舶轨迹数据的海洋观测移动人群感知参与者选择

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Transactions on Sustainable Computing Pub Date : 2024-02-23 DOI:10.1109/TSUSC.2024.3369092
Shuai Guo;Menglei Xia;Huanqun Xue;Shuang Wang;Chao Liu
{"title":"海洋人群:基于船舶轨迹数据的海洋观测移动人群感知参与者选择","authors":"Shuai Guo;Menglei Xia;Huanqun Xue;Shuang Wang;Chao Liu","doi":"10.1109/TSUSC.2024.3369092","DOIUrl":null,"url":null,"abstract":"With the in-depth study of the internal process mechanism of the global ocean by oceanographers, traditional ocean observation methods have been unable to meet the new observation requirements. In order to achieve a low-cost ocean observation mechanism with high spatio-temporal resolution, this paper introduces mobile crowd sensing technology into the field of ocean observation. First, a Transformer-based vessel trajectory prediction algorithm is proposed, which can monitor the location and movement trajectory of vessel in real time. Second, the participant selection algorithm in mobile crowd sensing is studied, and based on the trajectory prediction algorithm, a dynamic participant selection algorithm for ocean mobile crowd sensing is proposed by combining it with the discrete particle swarm optimization (DPSO) algorithm. Third, a coverage estimation algorithm is designed to estimate the coverage of the selection scheme. Finally, the spatio-temporal resolution of the vessel's driving trajectory is analyzed through experiments, which verifies the effectiveness of the algorithm and comprehensively confirms the feasibility of mobile crowd sensing in the field of ocean observation.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"9 6","pages":"889-901"},"PeriodicalIF":3.0000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"OceanCrowd: Vessel Trajectory Data-Based Participant Selection for Mobile Crowd Sensing in Ocean Observation\",\"authors\":\"Shuai Guo;Menglei Xia;Huanqun Xue;Shuang Wang;Chao Liu\",\"doi\":\"10.1109/TSUSC.2024.3369092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the in-depth study of the internal process mechanism of the global ocean by oceanographers, traditional ocean observation methods have been unable to meet the new observation requirements. In order to achieve a low-cost ocean observation mechanism with high spatio-temporal resolution, this paper introduces mobile crowd sensing technology into the field of ocean observation. First, a Transformer-based vessel trajectory prediction algorithm is proposed, which can monitor the location and movement trajectory of vessel in real time. Second, the participant selection algorithm in mobile crowd sensing is studied, and based on the trajectory prediction algorithm, a dynamic participant selection algorithm for ocean mobile crowd sensing is proposed by combining it with the discrete particle swarm optimization (DPSO) algorithm. Third, a coverage estimation algorithm is designed to estimate the coverage of the selection scheme. Finally, the spatio-temporal resolution of the vessel's driving trajectory is analyzed through experiments, which verifies the effectiveness of the algorithm and comprehensively confirms the feasibility of mobile crowd sensing in the field of ocean observation.\",\"PeriodicalId\":13268,\"journal\":{\"name\":\"IEEE Transactions on Sustainable Computing\",\"volume\":\"9 6\",\"pages\":\"889-901\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Sustainable Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10444760/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10444760/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

随着海洋学家对全球海洋内部过程机制研究的深入,传统的海洋观测方法已经不能满足新的观测要求。为了实现低成本、高时空分辨率的海洋观测机制,本文将移动人群传感技术引入海洋观测领域。首先,提出了一种基于变压器的船舶轨迹预测算法,该算法可以实时监测船舶的位置和运动轨迹;其次,研究了移动人群感知中的参与者选择算法,在轨迹预测算法的基础上,将其与离散粒子群优化(DPSO)算法相结合,提出了一种面向海洋移动人群感知的动态参与者选择算法。第三,设计了覆盖估计算法,对选择方案的覆盖进行估计。最后,通过实验分析了船舶行驶轨迹的时空分辨率,验证了算法的有效性,全面证实了移动人群感知在海洋观测领域的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
OceanCrowd: Vessel Trajectory Data-Based Participant Selection for Mobile Crowd Sensing in Ocean Observation
With the in-depth study of the internal process mechanism of the global ocean by oceanographers, traditional ocean observation methods have been unable to meet the new observation requirements. In order to achieve a low-cost ocean observation mechanism with high spatio-temporal resolution, this paper introduces mobile crowd sensing technology into the field of ocean observation. First, a Transformer-based vessel trajectory prediction algorithm is proposed, which can monitor the location and movement trajectory of vessel in real time. Second, the participant selection algorithm in mobile crowd sensing is studied, and based on the trajectory prediction algorithm, a dynamic participant selection algorithm for ocean mobile crowd sensing is proposed by combining it with the discrete particle swarm optimization (DPSO) algorithm. Third, a coverage estimation algorithm is designed to estimate the coverage of the selection scheme. Finally, the spatio-temporal resolution of the vessel's driving trajectory is analyzed through experiments, which verifies the effectiveness of the algorithm and comprehensively confirms the feasibility of mobile crowd sensing in the field of ocean observation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Sustainable Computing
IEEE Transactions on Sustainable Computing Mathematics-Control and Optimization
CiteScore
7.70
自引率
2.60%
发文量
54
期刊最新文献
Guest Editorial of the Special Section on AI Powered Edge Computing for IoT Editorial Addressing Concept Drift in IoT Anomaly Detection: Drift Detection, Interpretation, and Adaptation Dynamic Event-Triggered State Estimation for Power Harmonics With Quantization Effects: A Zonotopic Set-Membership Approach Staged Noise Perturbation for Privacy-Preserving Federated Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1