网络游戏中数据驱动的动态干预设计

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS IEEE Control Systems Letters Pub Date : 2024-12-04 DOI:10.1109/LCSYS.2024.3511420
Xiupeng Chen;Nima Monshizadeh
{"title":"网络游戏中数据驱动的动态干预设计","authors":"Xiupeng Chen;Nima Monshizadeh","doi":"10.1109/LCSYS.2024.3511420","DOIUrl":null,"url":null,"abstract":"Targeted interventions in games present a challenging problem due to the asymmetric information available to the regulator and the agents. This note addresses the problem of steering the actions of self-interested agents in quadratic network games towards a target action profile. A common starting point in the literature assumes prior knowledge of utility functions and/or network parameters. The goal of the results presented here is to remove this assumption and address scenarios where such a priori knowledge is unavailable. To this end, we design a data-driven dynamic intervention mechanism that relies solely on historical observations of agent actions and interventions. Additionally, we modify this mechanism to limit the amount of interventions, thereby considering budget constraints. Analytical convergence guarantees are provided for both mechanisms, and a numerical case study further demonstrates their effectiveness.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"8 ","pages":"2667-2672"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-Driven Dynamic Intervention Design in Network Games\",\"authors\":\"Xiupeng Chen;Nima Monshizadeh\",\"doi\":\"10.1109/LCSYS.2024.3511420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Targeted interventions in games present a challenging problem due to the asymmetric information available to the regulator and the agents. This note addresses the problem of steering the actions of self-interested agents in quadratic network games towards a target action profile. A common starting point in the literature assumes prior knowledge of utility functions and/or network parameters. The goal of the results presented here is to remove this assumption and address scenarios where such a priori knowledge is unavailable. To this end, we design a data-driven dynamic intervention mechanism that relies solely on historical observations of agent actions and interventions. Additionally, we modify this mechanism to limit the amount of interventions, thereby considering budget constraints. Analytical convergence guarantees are provided for both mechanisms, and a numerical case study further demonstrates their effectiveness.\",\"PeriodicalId\":37235,\"journal\":{\"name\":\"IEEE Control Systems Letters\",\"volume\":\"8 \",\"pages\":\"2667-2672\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Control Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10777055/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10777055/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

由于监管者和代理人之间的信息不对称,在博弈中有针对性的干预提出了一个具有挑战性的问题。本文讨论了在二次型网络博弈中如何将自利主体的行为导向目标行为。在文献中一个共同的起点假设效用函数和/或网络参数的先验知识。这里给出的结果的目标是消除这种假设,并解决无法获得这种先验知识的情况。为此,我们设计了一种数据驱动的动态干预机制,该机制仅依赖于对代理行为和干预的历史观察。此外,我们修改了这一机制,以限制干预的数量,从而考虑到预算限制。给出了两种机制的解析收敛保证,并通过数值算例进一步验证了其有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data-Driven Dynamic Intervention Design in Network Games
Targeted interventions in games present a challenging problem due to the asymmetric information available to the regulator and the agents. This note addresses the problem of steering the actions of self-interested agents in quadratic network games towards a target action profile. A common starting point in the literature assumes prior knowledge of utility functions and/or network parameters. The goal of the results presented here is to remove this assumption and address scenarios where such a priori knowledge is unavailable. To this end, we design a data-driven dynamic intervention mechanism that relies solely on historical observations of agent actions and interventions. Additionally, we modify this mechanism to limit the amount of interventions, thereby considering budget constraints. Analytical convergence guarantees are provided for both mechanisms, and a numerical case study further demonstrates their effectiveness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
期刊最新文献
Robust and Exponential Stability in Barrier-Certified Systems via Contracting Piecewise Smooth Dynamics PID Control of MIMO Nonlinear Uncertain Systems With Low Relative Degrees Robust NMPC for Uncalibrated IBVS Control of AUVs Contraction Analysis of Continuation Method for Suboptimal Model Predictive Control Spiking Nonlinear Opinion Dynamics (S-NOD) for Agile Decision-Making
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1