基于本地信息的分布式数据中心间截止日期感知协同流调度框架

IF 5.6 2区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS IEEE Transactions on Parallel and Distributed Systems Pub Date : 2024-11-28 DOI:10.1109/TPDS.2024.3508275
Xiaodong Dong;Lihai Nie;Zheli Liu;Yang Xiang
{"title":"基于本地信息的分布式数据中心间截止日期感知协同流调度框架","authors":"Xiaodong Dong;Lihai Nie;Zheli Liu;Yang Xiang","doi":"10.1109/TPDS.2024.3508275","DOIUrl":null,"url":null,"abstract":"Inter-datacenter network applications generate massive coflows for purposes, e.g., backup, synchronization, and analytics, with deadline requirements. Decentralized coflow scheduling frameworks are desirable for their scalability in cross-domain deployment but grappling with the challenge of information agnosticism for lack of cross-domain privileges. Current information-agnostic coflow scheduling methods are incompatible with decentralized frameworks for relying on centralized controllers to continuously monitor and learn from coflow global transmission states to infer global coflow information. Alternative methods propose mechanisms for decentralized global coflow information gathering and synchronization. However, they require dedicated physical hardware or control logic, which could be impractical for incremental deployment. This article proposes Slark, a decentralized deadline-aware coflow scheduling framework, which meets coflows’ soft and hard deadline requirements using only local traffic information. It eschews requiring global coflow transmission states and dedicated hardware or control logic by leveraging multiple software-implemented scheduling agents working independently on each node and integrating such information agnosticism into node-specific bandwidth allocation by modeling it as a robust optimization problem with flow information on the other nodes represented as uncertain parameters. Subsequently, we validate the performance robustness of Slark by investigating how perturbations in the optimal objective function value and the associated optimal solution are affected by uncertain parameters. Finally, we propose a firebug-swarm-optimization-based heuristic algorithm to tackle the non-convexity in our problem. Experimental results demonstrate that Slark can significantly enhance transmission revenue and increase soft and hard deadline guarantee ratios by 10.52% and 7.99% on average.","PeriodicalId":13257,"journal":{"name":"IEEE Transactions on Parallel and Distributed Systems","volume":"36 2","pages":"197-211"},"PeriodicalIF":5.6000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Slark: A Performance Robust Decentralized Inter-Datacenter Deadline-Aware Coflows Scheduling Framework With Local Information\",\"authors\":\"Xiaodong Dong;Lihai Nie;Zheli Liu;Yang Xiang\",\"doi\":\"10.1109/TPDS.2024.3508275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inter-datacenter network applications generate massive coflows for purposes, e.g., backup, synchronization, and analytics, with deadline requirements. Decentralized coflow scheduling frameworks are desirable for their scalability in cross-domain deployment but grappling with the challenge of information agnosticism for lack of cross-domain privileges. Current information-agnostic coflow scheduling methods are incompatible with decentralized frameworks for relying on centralized controllers to continuously monitor and learn from coflow global transmission states to infer global coflow information. Alternative methods propose mechanisms for decentralized global coflow information gathering and synchronization. However, they require dedicated physical hardware or control logic, which could be impractical for incremental deployment. This article proposes Slark, a decentralized deadline-aware coflow scheduling framework, which meets coflows’ soft and hard deadline requirements using only local traffic information. It eschews requiring global coflow transmission states and dedicated hardware or control logic by leveraging multiple software-implemented scheduling agents working independently on each node and integrating such information agnosticism into node-specific bandwidth allocation by modeling it as a robust optimization problem with flow information on the other nodes represented as uncertain parameters. Subsequently, we validate the performance robustness of Slark by investigating how perturbations in the optimal objective function value and the associated optimal solution are affected by uncertain parameters. Finally, we propose a firebug-swarm-optimization-based heuristic algorithm to tackle the non-convexity in our problem. Experimental results demonstrate that Slark can significantly enhance transmission revenue and increase soft and hard deadline guarantee ratios by 10.52% and 7.99% on average.\",\"PeriodicalId\":13257,\"journal\":{\"name\":\"IEEE Transactions on Parallel and Distributed Systems\",\"volume\":\"36 2\",\"pages\":\"197-211\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Parallel and Distributed Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10770555/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Parallel and Distributed Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10770555/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

跨数据中心网络应用程序生成大量的coflow,用于备份、同步和分析等目的,并具有截止日期要求。分散的协同流调度框架在跨域部署中的可扩展性是可取的,但由于缺乏跨域权限而面临信息不可知论的挑战。当前信息不可知的协同流调度方法与去中心化框架不兼容,依赖于集中式控制器持续监控和学习协同流全局传输状态来推断全局协同流信息。替代方法提出了分散的全球共流信息收集和同步机制。然而,它们需要专用的物理硬件或控制逻辑,这对于增量部署可能是不切实际的。本文提出了一种分散的截止日期感知的协同流调度框架lark,它仅使用本地交通信息来满足协同流的软截止日期和硬截止日期要求。它通过利用在每个节点上独立工作的多个软件实现的调度代理,并将这种信息不可知性集成到节点特定的带宽分配中,从而避免了对全局共流传输状态和专用硬件或控制逻辑的要求,将其建模为一个鲁棒优化问题,其他节点上的流量信息表示为不确定参数。随后,我们通过研究最优目标函数值和相关最优解的扰动如何受到不确定参数的影响来验证lark的性能鲁棒性。最后,我们提出了一种基于火虫群优化的启发式算法来解决问题中的非凸性。实验结果表明,lark可以显著提高传输收益,将软、硬截止日期保证比平均提高10.52%和7.99%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Slark: A Performance Robust Decentralized Inter-Datacenter Deadline-Aware Coflows Scheduling Framework With Local Information
Inter-datacenter network applications generate massive coflows for purposes, e.g., backup, synchronization, and analytics, with deadline requirements. Decentralized coflow scheduling frameworks are desirable for their scalability in cross-domain deployment but grappling with the challenge of information agnosticism for lack of cross-domain privileges. Current information-agnostic coflow scheduling methods are incompatible with decentralized frameworks for relying on centralized controllers to continuously monitor and learn from coflow global transmission states to infer global coflow information. Alternative methods propose mechanisms for decentralized global coflow information gathering and synchronization. However, they require dedicated physical hardware or control logic, which could be impractical for incremental deployment. This article proposes Slark, a decentralized deadline-aware coflow scheduling framework, which meets coflows’ soft and hard deadline requirements using only local traffic information. It eschews requiring global coflow transmission states and dedicated hardware or control logic by leveraging multiple software-implemented scheduling agents working independently on each node and integrating such information agnosticism into node-specific bandwidth allocation by modeling it as a robust optimization problem with flow information on the other nodes represented as uncertain parameters. Subsequently, we validate the performance robustness of Slark by investigating how perturbations in the optimal objective function value and the associated optimal solution are affected by uncertain parameters. Finally, we propose a firebug-swarm-optimization-based heuristic algorithm to tackle the non-convexity in our problem. Experimental results demonstrate that Slark can significantly enhance transmission revenue and increase soft and hard deadline guarantee ratios by 10.52% and 7.99% on average.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Parallel and Distributed Systems
IEEE Transactions on Parallel and Distributed Systems 工程技术-工程:电子与电气
CiteScore
11.00
自引率
9.40%
发文量
281
审稿时长
5.6 months
期刊介绍: IEEE Transactions on Parallel and Distributed Systems (TPDS) is published monthly. It publishes a range of papers, comments on previously published papers, and survey articles that deal with the parallel and distributed systems research areas of current importance to our readers. Particular areas of interest include, but are not limited to: a) Parallel and distributed algorithms, focusing on topics such as: models of computation; numerical, combinatorial, and data-intensive parallel algorithms, scalability of algorithms and data structures for parallel and distributed systems, communication and synchronization protocols, network algorithms, scheduling, and load balancing. b) Applications of parallel and distributed computing, including computational and data-enabled science and engineering, big data applications, parallel crowd sourcing, large-scale social network analysis, management of big data, cloud and grid computing, scientific and biomedical applications, mobile computing, and cyber-physical systems. c) Parallel and distributed architectures, including architectures for instruction-level and thread-level parallelism; design, analysis, implementation, fault resilience and performance measurements of multiple-processor systems; multicore processors, heterogeneous many-core systems; petascale and exascale systems designs; novel big data architectures; special purpose architectures, including graphics processors, signal processors, network processors, media accelerators, and other special purpose processors and accelerators; impact of technology on architecture; network and interconnect architectures; parallel I/O and storage systems; architecture of the memory hierarchy; power-efficient and green computing architectures; dependable architectures; and performance modeling and evaluation. d) Parallel and distributed software, including parallel and multicore programming languages and compilers, runtime systems, operating systems, Internet computing and web services, resource management including green computing, middleware for grids, clouds, and data centers, libraries, performance modeling and evaluation, parallel programming paradigms, and programming environments and tools.
期刊最新文献
2024 Reviewers List* HpT: Hybrid Acceleration of Spatio-Temporal Attention Model Training on Heterogeneous Manycore Architectures Sparrow: Expediting Smart Contract Execution for Blockchain Sharding via Inter-Shard Caching CAT: Cellular Automata on Tensor Cores UMPIPE: Unequal Microbatches-Based Pipeline Parallelism for Deep Neural Network Training
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1